Relation between mirror symmetry, homological mirror symmetry, and SYZ conjecture
up vote
5
down vote
favorite
I'm very new to mirror symmetry, and have a hard time establishing a broad overview of the subject. In particular I do not understand the precise relation between the following three conjectures:
- Mirror symmetry, as formulated on the first page of these notes
- Homological mirror symmetry (HMS)
- The SYZ conjecture
A first basic question: when people speak of the "mirror" of a CY variety, do they really always mean a mirror in the sense of point (1) above?
My main question is whether any of these conjectures actually imply each other? For example, HMS predicts an equivalence of categories, which is only applied, in heuristic arguments for SYZ, to skyscraper sheaves. So it seems that SYZ would be at most a (refinement of (skyscraper sheaves correspond to honest Lagrangians, not just any objects in the derived category) a) consequence of HMS. In particular, the two do not seem to imply eachother?
complex-geometry sg.symplectic-geometry mirror-symmetry
add a comment |
up vote
5
down vote
favorite
I'm very new to mirror symmetry, and have a hard time establishing a broad overview of the subject. In particular I do not understand the precise relation between the following three conjectures:
- Mirror symmetry, as formulated on the first page of these notes
- Homological mirror symmetry (HMS)
- The SYZ conjecture
A first basic question: when people speak of the "mirror" of a CY variety, do they really always mean a mirror in the sense of point (1) above?
My main question is whether any of these conjectures actually imply each other? For example, HMS predicts an equivalence of categories, which is only applied, in heuristic arguments for SYZ, to skyscraper sheaves. So it seems that SYZ would be at most a (refinement of (skyscraper sheaves correspond to honest Lagrangians, not just any objects in the derived category) a) consequence of HMS. In particular, the two do not seem to imply eachother?
complex-geometry sg.symplectic-geometry mirror-symmetry
add a comment |
up vote
5
down vote
favorite
up vote
5
down vote
favorite
I'm very new to mirror symmetry, and have a hard time establishing a broad overview of the subject. In particular I do not understand the precise relation between the following three conjectures:
- Mirror symmetry, as formulated on the first page of these notes
- Homological mirror symmetry (HMS)
- The SYZ conjecture
A first basic question: when people speak of the "mirror" of a CY variety, do they really always mean a mirror in the sense of point (1) above?
My main question is whether any of these conjectures actually imply each other? For example, HMS predicts an equivalence of categories, which is only applied, in heuristic arguments for SYZ, to skyscraper sheaves. So it seems that SYZ would be at most a (refinement of (skyscraper sheaves correspond to honest Lagrangians, not just any objects in the derived category) a) consequence of HMS. In particular, the two do not seem to imply eachother?
complex-geometry sg.symplectic-geometry mirror-symmetry
I'm very new to mirror symmetry, and have a hard time establishing a broad overview of the subject. In particular I do not understand the precise relation between the following three conjectures:
- Mirror symmetry, as formulated on the first page of these notes
- Homological mirror symmetry (HMS)
- The SYZ conjecture
A first basic question: when people speak of the "mirror" of a CY variety, do they really always mean a mirror in the sense of point (1) above?
My main question is whether any of these conjectures actually imply each other? For example, HMS predicts an equivalence of categories, which is only applied, in heuristic arguments for SYZ, to skyscraper sheaves. So it seems that SYZ would be at most a (refinement of (skyscraper sheaves correspond to honest Lagrangians, not just any objects in the derived category) a) consequence of HMS. In particular, the two do not seem to imply eachother?
complex-geometry sg.symplectic-geometry mirror-symmetry
complex-geometry sg.symplectic-geometry mirror-symmetry
edited 5 hours ago
asked 5 hours ago
user2520938
710512
710512
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
3
down vote
Disclaimer: I am also not an expert.
According to Perutz (see 'Core homological mirror symmetry project'), it is expected that T-duality (SYZ, your 3) implies HMS (your 2), which should imply Hodge-theoretic mirror symmetry (essentially your 1). In fact, when Kontsevich put forward his HMS conjecture, he gave a heuristic argument why one should be able to deduce Hodge-theoretic ('numerical') mirror symmetry from HMS (see his ICM 1994 talk). As far as I know, this has never been proven, but recently there have been efforts in that direction by Ganatra, Perutz, Sheridan, where they prove that Hodge-theoretic mirror symmetry implies HMS, modulo a technical conjecture, and modulo the definition of the Fukaya category of a Calabi-Yau manifold. It is expected that such a definition is given in 'Quantum cohomology and split generation in Lagrangian Floer theory' by Abouzaid and the symplectic quartet usually referred to as 'FOOO', a work which has been in preparation for a long time, but it seems that there is no preprint yet.
when people speak of the "mirror" of a CY variety, do they really always mean a mirror in the sense of point (1) above?
I believe there is no 'always' in this subject (even for what is really meant by CY, CY means different things to different people - from holonomy $=SU(3)$ to 'noncommutative'); but a sufficient condition for a pair of CY's to be mirror is certainly that physicists say it is mirror in their sense (which is some relation between associated CFTs).
Some of FOOO are available
– AHusain
2 hours ago
@AHusain The claim was that a specific document, coauthored by the five of AFOOO, is not available. (It is frequently cited as "in preparation", but I do not believe it has made a public appearance.)
– Mike Miller
2 hours ago
Oh I misparsed that statement as just FOOO, ok for AFOOO
– AHusain
2 hours ago
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
Disclaimer: I am also not an expert.
According to Perutz (see 'Core homological mirror symmetry project'), it is expected that T-duality (SYZ, your 3) implies HMS (your 2), which should imply Hodge-theoretic mirror symmetry (essentially your 1). In fact, when Kontsevich put forward his HMS conjecture, he gave a heuristic argument why one should be able to deduce Hodge-theoretic ('numerical') mirror symmetry from HMS (see his ICM 1994 talk). As far as I know, this has never been proven, but recently there have been efforts in that direction by Ganatra, Perutz, Sheridan, where they prove that Hodge-theoretic mirror symmetry implies HMS, modulo a technical conjecture, and modulo the definition of the Fukaya category of a Calabi-Yau manifold. It is expected that such a definition is given in 'Quantum cohomology and split generation in Lagrangian Floer theory' by Abouzaid and the symplectic quartet usually referred to as 'FOOO', a work which has been in preparation for a long time, but it seems that there is no preprint yet.
when people speak of the "mirror" of a CY variety, do they really always mean a mirror in the sense of point (1) above?
I believe there is no 'always' in this subject (even for what is really meant by CY, CY means different things to different people - from holonomy $=SU(3)$ to 'noncommutative'); but a sufficient condition for a pair of CY's to be mirror is certainly that physicists say it is mirror in their sense (which is some relation between associated CFTs).
Some of FOOO are available
– AHusain
2 hours ago
@AHusain The claim was that a specific document, coauthored by the five of AFOOO, is not available. (It is frequently cited as "in preparation", but I do not believe it has made a public appearance.)
– Mike Miller
2 hours ago
Oh I misparsed that statement as just FOOO, ok for AFOOO
– AHusain
2 hours ago
add a comment |
up vote
3
down vote
Disclaimer: I am also not an expert.
According to Perutz (see 'Core homological mirror symmetry project'), it is expected that T-duality (SYZ, your 3) implies HMS (your 2), which should imply Hodge-theoretic mirror symmetry (essentially your 1). In fact, when Kontsevich put forward his HMS conjecture, he gave a heuristic argument why one should be able to deduce Hodge-theoretic ('numerical') mirror symmetry from HMS (see his ICM 1994 talk). As far as I know, this has never been proven, but recently there have been efforts in that direction by Ganatra, Perutz, Sheridan, where they prove that Hodge-theoretic mirror symmetry implies HMS, modulo a technical conjecture, and modulo the definition of the Fukaya category of a Calabi-Yau manifold. It is expected that such a definition is given in 'Quantum cohomology and split generation in Lagrangian Floer theory' by Abouzaid and the symplectic quartet usually referred to as 'FOOO', a work which has been in preparation for a long time, but it seems that there is no preprint yet.
when people speak of the "mirror" of a CY variety, do they really always mean a mirror in the sense of point (1) above?
I believe there is no 'always' in this subject (even for what is really meant by CY, CY means different things to different people - from holonomy $=SU(3)$ to 'noncommutative'); but a sufficient condition for a pair of CY's to be mirror is certainly that physicists say it is mirror in their sense (which is some relation between associated CFTs).
Some of FOOO are available
– AHusain
2 hours ago
@AHusain The claim was that a specific document, coauthored by the five of AFOOO, is not available. (It is frequently cited as "in preparation", but I do not believe it has made a public appearance.)
– Mike Miller
2 hours ago
Oh I misparsed that statement as just FOOO, ok for AFOOO
– AHusain
2 hours ago
add a comment |
up vote
3
down vote
up vote
3
down vote
Disclaimer: I am also not an expert.
According to Perutz (see 'Core homological mirror symmetry project'), it is expected that T-duality (SYZ, your 3) implies HMS (your 2), which should imply Hodge-theoretic mirror symmetry (essentially your 1). In fact, when Kontsevich put forward his HMS conjecture, he gave a heuristic argument why one should be able to deduce Hodge-theoretic ('numerical') mirror symmetry from HMS (see his ICM 1994 talk). As far as I know, this has never been proven, but recently there have been efforts in that direction by Ganatra, Perutz, Sheridan, where they prove that Hodge-theoretic mirror symmetry implies HMS, modulo a technical conjecture, and modulo the definition of the Fukaya category of a Calabi-Yau manifold. It is expected that such a definition is given in 'Quantum cohomology and split generation in Lagrangian Floer theory' by Abouzaid and the symplectic quartet usually referred to as 'FOOO', a work which has been in preparation for a long time, but it seems that there is no preprint yet.
when people speak of the "mirror" of a CY variety, do they really always mean a mirror in the sense of point (1) above?
I believe there is no 'always' in this subject (even for what is really meant by CY, CY means different things to different people - from holonomy $=SU(3)$ to 'noncommutative'); but a sufficient condition for a pair of CY's to be mirror is certainly that physicists say it is mirror in their sense (which is some relation between associated CFTs).
Disclaimer: I am also not an expert.
According to Perutz (see 'Core homological mirror symmetry project'), it is expected that T-duality (SYZ, your 3) implies HMS (your 2), which should imply Hodge-theoretic mirror symmetry (essentially your 1). In fact, when Kontsevich put forward his HMS conjecture, he gave a heuristic argument why one should be able to deduce Hodge-theoretic ('numerical') mirror symmetry from HMS (see his ICM 1994 talk). As far as I know, this has never been proven, but recently there have been efforts in that direction by Ganatra, Perutz, Sheridan, where they prove that Hodge-theoretic mirror symmetry implies HMS, modulo a technical conjecture, and modulo the definition of the Fukaya category of a Calabi-Yau manifold. It is expected that such a definition is given in 'Quantum cohomology and split generation in Lagrangian Floer theory' by Abouzaid and the symplectic quartet usually referred to as 'FOOO', a work which has been in preparation for a long time, but it seems that there is no preprint yet.
when people speak of the "mirror" of a CY variety, do they really always mean a mirror in the sense of point (1) above?
I believe there is no 'always' in this subject (even for what is really meant by CY, CY means different things to different people - from holonomy $=SU(3)$ to 'noncommutative'); but a sufficient condition for a pair of CY's to be mirror is certainly that physicists say it is mirror in their sense (which is some relation between associated CFTs).
answered 3 hours ago
S. S.
375211
375211
Some of FOOO are available
– AHusain
2 hours ago
@AHusain The claim was that a specific document, coauthored by the five of AFOOO, is not available. (It is frequently cited as "in preparation", but I do not believe it has made a public appearance.)
– Mike Miller
2 hours ago
Oh I misparsed that statement as just FOOO, ok for AFOOO
– AHusain
2 hours ago
add a comment |
Some of FOOO are available
– AHusain
2 hours ago
@AHusain The claim was that a specific document, coauthored by the five of AFOOO, is not available. (It is frequently cited as "in preparation", but I do not believe it has made a public appearance.)
– Mike Miller
2 hours ago
Oh I misparsed that statement as just FOOO, ok for AFOOO
– AHusain
2 hours ago
Some of FOOO are available
– AHusain
2 hours ago
Some of FOOO are available
– AHusain
2 hours ago
@AHusain The claim was that a specific document, coauthored by the five of AFOOO, is not available. (It is frequently cited as "in preparation", but I do not believe it has made a public appearance.)
– Mike Miller
2 hours ago
@AHusain The claim was that a specific document, coauthored by the five of AFOOO, is not available. (It is frequently cited as "in preparation", but I do not believe it has made a public appearance.)
– Mike Miller
2 hours ago
Oh I misparsed that statement as just FOOO, ok for AFOOO
– AHusain
2 hours ago
Oh I misparsed that statement as just FOOO, ok for AFOOO
– AHusain
2 hours ago
add a comment |
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f317220%2frelation-between-mirror-symmetry-homological-mirror-symmetry-and-syz-conjectur%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown