sliding window for linear regression using numpy as_strided












0















I have leveraged the rolling window examples using as_strided to create various sliding versions of numpy functions.



def std(a,window):
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
strides = a.strides + (a.strides[-1],)
return np.std(np.lib.stride_tricks.as_strided(a, shape=shape,strides=strides),axis=1)


Now I'm attempt to leverage the same as_strided method on a linear regression function. y = a + bx



def linear_regress(x,y):
sum_x = np.sum(x)
sum_y = np.sum(y)
sum_xy = np.sum(np.multiply(x,y))
sum_xx = np.sum(np.multiply(x,x))
sum_yy = np.sum(np.multiply(y,y))
number_of_records = len(x)
A = (sum_y*sum_xx - sum_x*sum_xy)/(number_of_records*sum_xx - sum_x*sum_x)
B = (number_of_records*sum_xy - sum_x*sum_y)/(number_of_records*sum_xx - sum_x*sum_x)
return A + B*number_of_records


You can get the same result using stats



from scipy import stats
slope, intercept, r_value, p_value, std_err = stats.linregress(x,p)
xValue = len(x)
y = (slope + intercept*xValue)


I am not sure how to fit the above functions into the as_strided method when two arrays are passed. I guess I would have to create two shapes and pass both through?



def rolling_lr(x,y,window):
shape = y.shape[:-1] + (y.shape[-1] - window + 1, window)
strides = y.strides + (y.strides[-1],)
return linear_regress(np.lib.stride_tricks.as_strided(x,y shape=shape, strides=strides))


Any help is appreciated.










share|improve this question

























  • This doesn't answer your question, but I recommend using skimage.util.view_as_windows for rolling windows.

    – Nils Werner
    Nov 23 '18 at 22:21
















0















I have leveraged the rolling window examples using as_strided to create various sliding versions of numpy functions.



def std(a,window):
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
strides = a.strides + (a.strides[-1],)
return np.std(np.lib.stride_tricks.as_strided(a, shape=shape,strides=strides),axis=1)


Now I'm attempt to leverage the same as_strided method on a linear regression function. y = a + bx



def linear_regress(x,y):
sum_x = np.sum(x)
sum_y = np.sum(y)
sum_xy = np.sum(np.multiply(x,y))
sum_xx = np.sum(np.multiply(x,x))
sum_yy = np.sum(np.multiply(y,y))
number_of_records = len(x)
A = (sum_y*sum_xx - sum_x*sum_xy)/(number_of_records*sum_xx - sum_x*sum_x)
B = (number_of_records*sum_xy - sum_x*sum_y)/(number_of_records*sum_xx - sum_x*sum_x)
return A + B*number_of_records


You can get the same result using stats



from scipy import stats
slope, intercept, r_value, p_value, std_err = stats.linregress(x,p)
xValue = len(x)
y = (slope + intercept*xValue)


I am not sure how to fit the above functions into the as_strided method when two arrays are passed. I guess I would have to create two shapes and pass both through?



def rolling_lr(x,y,window):
shape = y.shape[:-1] + (y.shape[-1] - window + 1, window)
strides = y.strides + (y.strides[-1],)
return linear_regress(np.lib.stride_tricks.as_strided(x,y shape=shape, strides=strides))


Any help is appreciated.










share|improve this question

























  • This doesn't answer your question, but I recommend using skimage.util.view_as_windows for rolling windows.

    – Nils Werner
    Nov 23 '18 at 22:21














0












0








0








I have leveraged the rolling window examples using as_strided to create various sliding versions of numpy functions.



def std(a,window):
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
strides = a.strides + (a.strides[-1],)
return np.std(np.lib.stride_tricks.as_strided(a, shape=shape,strides=strides),axis=1)


Now I'm attempt to leverage the same as_strided method on a linear regression function. y = a + bx



def linear_regress(x,y):
sum_x = np.sum(x)
sum_y = np.sum(y)
sum_xy = np.sum(np.multiply(x,y))
sum_xx = np.sum(np.multiply(x,x))
sum_yy = np.sum(np.multiply(y,y))
number_of_records = len(x)
A = (sum_y*sum_xx - sum_x*sum_xy)/(number_of_records*sum_xx - sum_x*sum_x)
B = (number_of_records*sum_xy - sum_x*sum_y)/(number_of_records*sum_xx - sum_x*sum_x)
return A + B*number_of_records


You can get the same result using stats



from scipy import stats
slope, intercept, r_value, p_value, std_err = stats.linregress(x,p)
xValue = len(x)
y = (slope + intercept*xValue)


I am not sure how to fit the above functions into the as_strided method when two arrays are passed. I guess I would have to create two shapes and pass both through?



def rolling_lr(x,y,window):
shape = y.shape[:-1] + (y.shape[-1] - window + 1, window)
strides = y.strides + (y.strides[-1],)
return linear_regress(np.lib.stride_tricks.as_strided(x,y shape=shape, strides=strides))


Any help is appreciated.










share|improve this question
















I have leveraged the rolling window examples using as_strided to create various sliding versions of numpy functions.



def std(a,window):
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
strides = a.strides + (a.strides[-1],)
return np.std(np.lib.stride_tricks.as_strided(a, shape=shape,strides=strides),axis=1)


Now I'm attempt to leverage the same as_strided method on a linear regression function. y = a + bx



def linear_regress(x,y):
sum_x = np.sum(x)
sum_y = np.sum(y)
sum_xy = np.sum(np.multiply(x,y))
sum_xx = np.sum(np.multiply(x,x))
sum_yy = np.sum(np.multiply(y,y))
number_of_records = len(x)
A = (sum_y*sum_xx - sum_x*sum_xy)/(number_of_records*sum_xx - sum_x*sum_x)
B = (number_of_records*sum_xy - sum_x*sum_y)/(number_of_records*sum_xx - sum_x*sum_x)
return A + B*number_of_records


You can get the same result using stats



from scipy import stats
slope, intercept, r_value, p_value, std_err = stats.linregress(x,p)
xValue = len(x)
y = (slope + intercept*xValue)


I am not sure how to fit the above functions into the as_strided method when two arrays are passed. I guess I would have to create two shapes and pass both through?



def rolling_lr(x,y,window):
shape = y.shape[:-1] + (y.shape[-1] - window + 1, window)
strides = y.strides + (y.strides[-1],)
return linear_regress(np.lib.stride_tricks.as_strided(x,y shape=shape, strides=strides))


Any help is appreciated.







python numpy regression






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 25 '18 at 18:04







John Holmes

















asked Nov 23 '18 at 22:05









John HolmesJohn Holmes

247




247













  • This doesn't answer your question, but I recommend using skimage.util.view_as_windows for rolling windows.

    – Nils Werner
    Nov 23 '18 at 22:21



















  • This doesn't answer your question, but I recommend using skimage.util.view_as_windows for rolling windows.

    – Nils Werner
    Nov 23 '18 at 22:21

















This doesn't answer your question, but I recommend using skimage.util.view_as_windows for rolling windows.

– Nils Werner
Nov 23 '18 at 22:21





This doesn't answer your question, but I recommend using skimage.util.view_as_windows for rolling windows.

– Nils Werner
Nov 23 '18 at 22:21












2 Answers
2






active

oldest

votes


















0














Here is what i came up with. Not the prettiest but works.



def linear_regress(x,y,window):
x_shape = x.shape[:-1] + (x.shape[-1] - window + 1, window)
x_strides = x.strides + (x.strides[-1],)
y_shape = y.shape[:-1] + (y.shape[-1] - window + 1, window)
y_strides = y.strides + (y.strides[-1],)
sx = np.lib.stride_tricks.as_strided(x,shape=x_shape, strides=x_strides)
sy = np.lib.stride_tricks.as_strided(y,shape=y_shape, strides=y_strides)
sum_x = np.sum(sx,axis=1)
sum_y = np.sum(sy,axis=1)
sum_xy = np.sum(np.multiply(sx,sy),axis=1)
sum_xx = np.sum(np.multiply(sx,sx),axis=1)
sum_yy = np.sum(np.multiply(sy,sy),axis=1)
m = (sum_y*sum_xx - sum_x*sum_xy)/(window*sum_xx - sum_x*sum_x)
b = (window*sum_xy - sum_x*sum_y)/(window*sum_xx - sum_x*sum_x)





share|improve this answer































    0














    Interesting, I have never seen the stride function. The docs do warn about this method however. An alternative method would be using linear algebra to do the regression on the windows. Here is a trivial example:



    from numpy import *

    # generate points
    N = 30
    x = linspace(0, 10, N)[:, None]
    X = ones((N, 1)) * x
    Y = X * array([1, 30]) + random.randn(*X.shape)*1e-1
    XX = concatenate((ones((N,1)), X), axis = 1)

    # window data
    windowLength = 10
    windows = array([roll(
    XX, -i * windowLength, axis = 0)[:windowLength, :]
    for i in range(len(XX) - windowLength)])
    windowsY = array([roll(Y, -i * windowLength, axis = 0)[:windowLength, :]
    for i in range(len(Y) - windowLength)])


    # linear regression on windows
    reg = array([
    ((linalg.pinv(wx.T.dot(wx))).dot(wx.T)).dot(wy) for
    wx, wy in zip(windows, windowsY)])

    # plot regression on windows
    from matplotlib import style
    style.use('seaborn-poster')
    from matplotlib.pyplot import subplots, cm
    fig, ax = subplots()

    colors = cm.tab20(linspace(0, 1, len(windows)))
    for win, color, coeffs, yi in zip(windows, colors, reg, windowsY):

    ax.plot(win, yi,'.', alpha = .5, color = color)
    ax.plot(win[:, 1], win.dot(coeffs), alpha = .5, color = color)
    x += 1
    ax.set(**dict(xlabel = 'x', ylabel = 'y'))


    Which produces:
    enter image description here






    share|improve this answer
























    • thanks Global. I use as_strided for the speed. I have read the potential issues with using as_strided.

      – John Holmes
      Nov 25 '18 at 17:11











    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53453383%2fsliding-window-for-linear-regression-using-numpy-as-strided%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    Here is what i came up with. Not the prettiest but works.



    def linear_regress(x,y,window):
    x_shape = x.shape[:-1] + (x.shape[-1] - window + 1, window)
    x_strides = x.strides + (x.strides[-1],)
    y_shape = y.shape[:-1] + (y.shape[-1] - window + 1, window)
    y_strides = y.strides + (y.strides[-1],)
    sx = np.lib.stride_tricks.as_strided(x,shape=x_shape, strides=x_strides)
    sy = np.lib.stride_tricks.as_strided(y,shape=y_shape, strides=y_strides)
    sum_x = np.sum(sx,axis=1)
    sum_y = np.sum(sy,axis=1)
    sum_xy = np.sum(np.multiply(sx,sy),axis=1)
    sum_xx = np.sum(np.multiply(sx,sx),axis=1)
    sum_yy = np.sum(np.multiply(sy,sy),axis=1)
    m = (sum_y*sum_xx - sum_x*sum_xy)/(window*sum_xx - sum_x*sum_x)
    b = (window*sum_xy - sum_x*sum_y)/(window*sum_xx - sum_x*sum_x)





    share|improve this answer




























      0














      Here is what i came up with. Not the prettiest but works.



      def linear_regress(x,y,window):
      x_shape = x.shape[:-1] + (x.shape[-1] - window + 1, window)
      x_strides = x.strides + (x.strides[-1],)
      y_shape = y.shape[:-1] + (y.shape[-1] - window + 1, window)
      y_strides = y.strides + (y.strides[-1],)
      sx = np.lib.stride_tricks.as_strided(x,shape=x_shape, strides=x_strides)
      sy = np.lib.stride_tricks.as_strided(y,shape=y_shape, strides=y_strides)
      sum_x = np.sum(sx,axis=1)
      sum_y = np.sum(sy,axis=1)
      sum_xy = np.sum(np.multiply(sx,sy),axis=1)
      sum_xx = np.sum(np.multiply(sx,sx),axis=1)
      sum_yy = np.sum(np.multiply(sy,sy),axis=1)
      m = (sum_y*sum_xx - sum_x*sum_xy)/(window*sum_xx - sum_x*sum_x)
      b = (window*sum_xy - sum_x*sum_y)/(window*sum_xx - sum_x*sum_x)





      share|improve this answer


























        0












        0








        0







        Here is what i came up with. Not the prettiest but works.



        def linear_regress(x,y,window):
        x_shape = x.shape[:-1] + (x.shape[-1] - window + 1, window)
        x_strides = x.strides + (x.strides[-1],)
        y_shape = y.shape[:-1] + (y.shape[-1] - window + 1, window)
        y_strides = y.strides + (y.strides[-1],)
        sx = np.lib.stride_tricks.as_strided(x,shape=x_shape, strides=x_strides)
        sy = np.lib.stride_tricks.as_strided(y,shape=y_shape, strides=y_strides)
        sum_x = np.sum(sx,axis=1)
        sum_y = np.sum(sy,axis=1)
        sum_xy = np.sum(np.multiply(sx,sy),axis=1)
        sum_xx = np.sum(np.multiply(sx,sx),axis=1)
        sum_yy = np.sum(np.multiply(sy,sy),axis=1)
        m = (sum_y*sum_xx - sum_x*sum_xy)/(window*sum_xx - sum_x*sum_x)
        b = (window*sum_xy - sum_x*sum_y)/(window*sum_xx - sum_x*sum_x)





        share|improve this answer













        Here is what i came up with. Not the prettiest but works.



        def linear_regress(x,y,window):
        x_shape = x.shape[:-1] + (x.shape[-1] - window + 1, window)
        x_strides = x.strides + (x.strides[-1],)
        y_shape = y.shape[:-1] + (y.shape[-1] - window + 1, window)
        y_strides = y.strides + (y.strides[-1],)
        sx = np.lib.stride_tricks.as_strided(x,shape=x_shape, strides=x_strides)
        sy = np.lib.stride_tricks.as_strided(y,shape=y_shape, strides=y_strides)
        sum_x = np.sum(sx,axis=1)
        sum_y = np.sum(sy,axis=1)
        sum_xy = np.sum(np.multiply(sx,sy),axis=1)
        sum_xx = np.sum(np.multiply(sx,sx),axis=1)
        sum_yy = np.sum(np.multiply(sy,sy),axis=1)
        m = (sum_y*sum_xx - sum_x*sum_xy)/(window*sum_xx - sum_x*sum_x)
        b = (window*sum_xy - sum_x*sum_y)/(window*sum_xx - sum_x*sum_x)






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 25 '18 at 1:17









        John HolmesJohn Holmes

        247




        247

























            0














            Interesting, I have never seen the stride function. The docs do warn about this method however. An alternative method would be using linear algebra to do the regression on the windows. Here is a trivial example:



            from numpy import *

            # generate points
            N = 30
            x = linspace(0, 10, N)[:, None]
            X = ones((N, 1)) * x
            Y = X * array([1, 30]) + random.randn(*X.shape)*1e-1
            XX = concatenate((ones((N,1)), X), axis = 1)

            # window data
            windowLength = 10
            windows = array([roll(
            XX, -i * windowLength, axis = 0)[:windowLength, :]
            for i in range(len(XX) - windowLength)])
            windowsY = array([roll(Y, -i * windowLength, axis = 0)[:windowLength, :]
            for i in range(len(Y) - windowLength)])


            # linear regression on windows
            reg = array([
            ((linalg.pinv(wx.T.dot(wx))).dot(wx.T)).dot(wy) for
            wx, wy in zip(windows, windowsY)])

            # plot regression on windows
            from matplotlib import style
            style.use('seaborn-poster')
            from matplotlib.pyplot import subplots, cm
            fig, ax = subplots()

            colors = cm.tab20(linspace(0, 1, len(windows)))
            for win, color, coeffs, yi in zip(windows, colors, reg, windowsY):

            ax.plot(win, yi,'.', alpha = .5, color = color)
            ax.plot(win[:, 1], win.dot(coeffs), alpha = .5, color = color)
            x += 1
            ax.set(**dict(xlabel = 'x', ylabel = 'y'))


            Which produces:
            enter image description here






            share|improve this answer
























            • thanks Global. I use as_strided for the speed. I have read the potential issues with using as_strided.

              – John Holmes
              Nov 25 '18 at 17:11
















            0














            Interesting, I have never seen the stride function. The docs do warn about this method however. An alternative method would be using linear algebra to do the regression on the windows. Here is a trivial example:



            from numpy import *

            # generate points
            N = 30
            x = linspace(0, 10, N)[:, None]
            X = ones((N, 1)) * x
            Y = X * array([1, 30]) + random.randn(*X.shape)*1e-1
            XX = concatenate((ones((N,1)), X), axis = 1)

            # window data
            windowLength = 10
            windows = array([roll(
            XX, -i * windowLength, axis = 0)[:windowLength, :]
            for i in range(len(XX) - windowLength)])
            windowsY = array([roll(Y, -i * windowLength, axis = 0)[:windowLength, :]
            for i in range(len(Y) - windowLength)])


            # linear regression on windows
            reg = array([
            ((linalg.pinv(wx.T.dot(wx))).dot(wx.T)).dot(wy) for
            wx, wy in zip(windows, windowsY)])

            # plot regression on windows
            from matplotlib import style
            style.use('seaborn-poster')
            from matplotlib.pyplot import subplots, cm
            fig, ax = subplots()

            colors = cm.tab20(linspace(0, 1, len(windows)))
            for win, color, coeffs, yi in zip(windows, colors, reg, windowsY):

            ax.plot(win, yi,'.', alpha = .5, color = color)
            ax.plot(win[:, 1], win.dot(coeffs), alpha = .5, color = color)
            x += 1
            ax.set(**dict(xlabel = 'x', ylabel = 'y'))


            Which produces:
            enter image description here






            share|improve this answer
























            • thanks Global. I use as_strided for the speed. I have read the potential issues with using as_strided.

              – John Holmes
              Nov 25 '18 at 17:11














            0












            0








            0







            Interesting, I have never seen the stride function. The docs do warn about this method however. An alternative method would be using linear algebra to do the regression on the windows. Here is a trivial example:



            from numpy import *

            # generate points
            N = 30
            x = linspace(0, 10, N)[:, None]
            X = ones((N, 1)) * x
            Y = X * array([1, 30]) + random.randn(*X.shape)*1e-1
            XX = concatenate((ones((N,1)), X), axis = 1)

            # window data
            windowLength = 10
            windows = array([roll(
            XX, -i * windowLength, axis = 0)[:windowLength, :]
            for i in range(len(XX) - windowLength)])
            windowsY = array([roll(Y, -i * windowLength, axis = 0)[:windowLength, :]
            for i in range(len(Y) - windowLength)])


            # linear regression on windows
            reg = array([
            ((linalg.pinv(wx.T.dot(wx))).dot(wx.T)).dot(wy) for
            wx, wy in zip(windows, windowsY)])

            # plot regression on windows
            from matplotlib import style
            style.use('seaborn-poster')
            from matplotlib.pyplot import subplots, cm
            fig, ax = subplots()

            colors = cm.tab20(linspace(0, 1, len(windows)))
            for win, color, coeffs, yi in zip(windows, colors, reg, windowsY):

            ax.plot(win, yi,'.', alpha = .5, color = color)
            ax.plot(win[:, 1], win.dot(coeffs), alpha = .5, color = color)
            x += 1
            ax.set(**dict(xlabel = 'x', ylabel = 'y'))


            Which produces:
            enter image description here






            share|improve this answer













            Interesting, I have never seen the stride function. The docs do warn about this method however. An alternative method would be using linear algebra to do the regression on the windows. Here is a trivial example:



            from numpy import *

            # generate points
            N = 30
            x = linspace(0, 10, N)[:, None]
            X = ones((N, 1)) * x
            Y = X * array([1, 30]) + random.randn(*X.shape)*1e-1
            XX = concatenate((ones((N,1)), X), axis = 1)

            # window data
            windowLength = 10
            windows = array([roll(
            XX, -i * windowLength, axis = 0)[:windowLength, :]
            for i in range(len(XX) - windowLength)])
            windowsY = array([roll(Y, -i * windowLength, axis = 0)[:windowLength, :]
            for i in range(len(Y) - windowLength)])


            # linear regression on windows
            reg = array([
            ((linalg.pinv(wx.T.dot(wx))).dot(wx.T)).dot(wy) for
            wx, wy in zip(windows, windowsY)])

            # plot regression on windows
            from matplotlib import style
            style.use('seaborn-poster')
            from matplotlib.pyplot import subplots, cm
            fig, ax = subplots()

            colors = cm.tab20(linspace(0, 1, len(windows)))
            for win, color, coeffs, yi in zip(windows, colors, reg, windowsY):

            ax.plot(win, yi,'.', alpha = .5, color = color)
            ax.plot(win[:, 1], win.dot(coeffs), alpha = .5, color = color)
            x += 1
            ax.set(**dict(xlabel = 'x', ylabel = 'y'))


            Which produces:
            enter image description here







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered Nov 25 '18 at 2:51









            GlobalTravelerGlobalTraveler

            57639




            57639













            • thanks Global. I use as_strided for the speed. I have read the potential issues with using as_strided.

              – John Holmes
              Nov 25 '18 at 17:11



















            • thanks Global. I use as_strided for the speed. I have read the potential issues with using as_strided.

              – John Holmes
              Nov 25 '18 at 17:11

















            thanks Global. I use as_strided for the speed. I have read the potential issues with using as_strided.

            – John Holmes
            Nov 25 '18 at 17:11





            thanks Global. I use as_strided for the speed. I have read the potential issues with using as_strided.

            – John Holmes
            Nov 25 '18 at 17:11


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53453383%2fsliding-window-for-linear-regression-using-numpy-as-strided%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            404 Error Contact Form 7 ajax form submitting

            How to know if a Active Directory user can login interactively

            TypeError: fit_transform() missing 1 required positional argument: 'X'