How to solve $intfrac{ln x}{x^2(ln (x)-1)^2}dx$ by substitution
$begingroup$
$$intfrac{ln x}{x^2(ln (x)-1)^2}dx$$
Hello, I haven't be able to solve this integral, I've tried to do $u = ln (x)-1$ but couldn't make it work, any insight?
calculus integration indefinite-integrals
$endgroup$
add a comment |
$begingroup$
$$intfrac{ln x}{x^2(ln (x)-1)^2}dx$$
Hello, I haven't be able to solve this integral, I've tried to do $u = ln (x)-1$ but couldn't make it work, any insight?
calculus integration indefinite-integrals
$endgroup$
add a comment |
$begingroup$
$$intfrac{ln x}{x^2(ln (x)-1)^2}dx$$
Hello, I haven't be able to solve this integral, I've tried to do $u = ln (x)-1$ but couldn't make it work, any insight?
calculus integration indefinite-integrals
$endgroup$
$$intfrac{ln x}{x^2(ln (x)-1)^2}dx$$
Hello, I haven't be able to solve this integral, I've tried to do $u = ln (x)-1$ but couldn't make it work, any insight?
calculus integration indefinite-integrals
calculus integration indefinite-integrals
edited Nov 24 '18 at 6:15
user21820
38.9k543153
38.9k543153
asked Nov 23 '18 at 21:05
Andres OropezaAndres Oropeza
405
405
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$xln x-x=uimplies ln x dx=duimpliesdisplaystyle intfrac{du}{u^2}=dfrac{u^{-1}}{-1}+C=dfrac{1}{x-xln x}+C.$
$endgroup$
5
$begingroup$
I think it should be noted that the motivation of the substitution is because the denominator can be rewritten as $(x(ln x-1))^2$, and of course the nice fact that $du/dx$ turns out exactly to be the numerator.
$endgroup$
– YiFan
Nov 23 '18 at 21:39
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010835%2fhow-to-solve-int-frac-ln-xx2-ln-x-12dx-by-substitution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$xln x-x=uimplies ln x dx=duimpliesdisplaystyle intfrac{du}{u^2}=dfrac{u^{-1}}{-1}+C=dfrac{1}{x-xln x}+C.$
$endgroup$
5
$begingroup$
I think it should be noted that the motivation of the substitution is because the denominator can be rewritten as $(x(ln x-1))^2$, and of course the nice fact that $du/dx$ turns out exactly to be the numerator.
$endgroup$
– YiFan
Nov 23 '18 at 21:39
add a comment |
$begingroup$
$xln x-x=uimplies ln x dx=duimpliesdisplaystyle intfrac{du}{u^2}=dfrac{u^{-1}}{-1}+C=dfrac{1}{x-xln x}+C.$
$endgroup$
5
$begingroup$
I think it should be noted that the motivation of the substitution is because the denominator can be rewritten as $(x(ln x-1))^2$, and of course the nice fact that $du/dx$ turns out exactly to be the numerator.
$endgroup$
– YiFan
Nov 23 '18 at 21:39
add a comment |
$begingroup$
$xln x-x=uimplies ln x dx=duimpliesdisplaystyle intfrac{du}{u^2}=dfrac{u^{-1}}{-1}+C=dfrac{1}{x-xln x}+C.$
$endgroup$
$xln x-x=uimplies ln x dx=duimpliesdisplaystyle intfrac{du}{u^2}=dfrac{u^{-1}}{-1}+C=dfrac{1}{x-xln x}+C.$
answered Nov 23 '18 at 21:20
Yadati KiranYadati Kiran
1,7851619
1,7851619
5
$begingroup$
I think it should be noted that the motivation of the substitution is because the denominator can be rewritten as $(x(ln x-1))^2$, and of course the nice fact that $du/dx$ turns out exactly to be the numerator.
$endgroup$
– YiFan
Nov 23 '18 at 21:39
add a comment |
5
$begingroup$
I think it should be noted that the motivation of the substitution is because the denominator can be rewritten as $(x(ln x-1))^2$, and of course the nice fact that $du/dx$ turns out exactly to be the numerator.
$endgroup$
– YiFan
Nov 23 '18 at 21:39
5
5
$begingroup$
I think it should be noted that the motivation of the substitution is because the denominator can be rewritten as $(x(ln x-1))^2$, and of course the nice fact that $du/dx$ turns out exactly to be the numerator.
$endgroup$
– YiFan
Nov 23 '18 at 21:39
$begingroup$
I think it should be noted that the motivation of the substitution is because the denominator can be rewritten as $(x(ln x-1))^2$, and of course the nice fact that $du/dx$ turns out exactly to be the numerator.
$endgroup$
– YiFan
Nov 23 '18 at 21:39
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010835%2fhow-to-solve-int-frac-ln-xx2-ln-x-12dx-by-substitution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown