RcppParallel version much faster when using only one thread












0















I'm testing package RcppParallel to compute inner products for on-disk data (accessed via memory-mapping -- similar to package bigmemory).



A "minimal" reproducing example:



// [[Rcpp::depends(RcppParallel, BH, bigstatsr)]]
#include <bigstatsr/BMCodeAcc.h>
#include <RcppParallel.h>
using namespace RcppParallel;

struct Sum : public Worker {

SubBMCode256Acc macc;
double xySum;
std::size_t j0, j;

// constructors
Sum(SubBMCode256Acc macc) :
macc(macc), xySum(0), j0(0), j(0) {}
Sum(const Sum& sum, std::size_t j0, std::size_t j) :
macc(sum.macc), xySum(0), j0(j0), j(j) {}
Sum(const Sum& sum, Split) :
macc(sum.macc), xySum(0), j0(sum.j0), j(sum.j) {}

// accumulate just the element of the range I've been asked to
void operator()(std::size_t begin, std::size_t end) {
for (std::size_t i = begin; i < end; i++) {
xySum += macc(i, j) * macc(i, j0);
}
}
// join results
void join(const Sum& rhs) {
xySum += rhs.xySum;
}
};

// [[Rcpp::export]]
NumericVector parallelVectorSum(Environment BM) {

XPtr<FBM> xpBM = BM["address"];
std::size_t n = xpBM->nrow();
std::size_t m = xpBM->ncol();
SubBMCode256Acc macc(xpBM, seq_len(n) - 1, seq_len(m) - 1, BM["code256"]);

int grain = std::sqrt(n);

Sum sum0(macc);
NumericVector res(m);
for (size_t j = 0; j < m; j++) {
Sum sum(sum0, 0, j);
parallelReduce(0, n, sum, grain);
res[j] = sum.xySum;
}

return res;
}


/*** R
RcppParallel::setThreadOptions(2)
library(bigsnpr)
snp <- snp_attachExtdata()
G <- snp$genotypes
test0 <- parallelVectorSum(G)

G2 <- big_copy(G, ind.row = rep(rows_along(G), 500))
dim(G2)
RcppParallel::setThreadOptions(1)
system.time(test1 <- parallelVectorSum(G2))
testthat::expect_identical(test1, 500 * test0)
RcppParallel::setThreadOptions(2)
system.time(test2 <- parallelVectorSum(G2))
testthat::expect_identical(test2, 500 * test0)
*/


Output:



> Rcpp::sourceCpp('tmp-tests/test-rcpp-parallel.cpp')

> RcppParallel::setThreadOptions(2)

> library(bigsnpr)

> snp <- snp_attachExtdata()

> G <- snp$genotypes

> test0 <- parallelVectorSum(G)

> G2 <- big_copy(G, ind.row = rep(rows_along(G), 500))

> dim(G2)
[1] 258500 4542

> RcppParallel::setThreadOptions(1)

> system.time(test1 <- parallelVectorSum(G2)) # 100 / 3
user system elapsed
3.621 0.423 4.045

> testthat::expect_identical(test1, 500 * test0)

> RcppParallel::setThreadOptions(2)

> system.time(test2 <- parallelVectorSum(G2)) # 177 / 39
user system elapsed
39.958 42.590 53.516

> testthat::expect_identical(test2, 500 * test0)


Using one thread takes 4 seconds, and 53 seconds using 2 threads. I'm a bit lost of what could possibly be causing this large difference. Any idea??



PS1: I've run this on two different computers (no other processes running).



PS2: I know I should probably parallelize over j instead. I've tested it; it works well. Yet, in the real problem I have, iterations over j are not independent, so that it would be much easier to parallelize over i.










share|improve this question





























    0















    I'm testing package RcppParallel to compute inner products for on-disk data (accessed via memory-mapping -- similar to package bigmemory).



    A "minimal" reproducing example:



    // [[Rcpp::depends(RcppParallel, BH, bigstatsr)]]
    #include <bigstatsr/BMCodeAcc.h>
    #include <RcppParallel.h>
    using namespace RcppParallel;

    struct Sum : public Worker {

    SubBMCode256Acc macc;
    double xySum;
    std::size_t j0, j;

    // constructors
    Sum(SubBMCode256Acc macc) :
    macc(macc), xySum(0), j0(0), j(0) {}
    Sum(const Sum& sum, std::size_t j0, std::size_t j) :
    macc(sum.macc), xySum(0), j0(j0), j(j) {}
    Sum(const Sum& sum, Split) :
    macc(sum.macc), xySum(0), j0(sum.j0), j(sum.j) {}

    // accumulate just the element of the range I've been asked to
    void operator()(std::size_t begin, std::size_t end) {
    for (std::size_t i = begin; i < end; i++) {
    xySum += macc(i, j) * macc(i, j0);
    }
    }
    // join results
    void join(const Sum& rhs) {
    xySum += rhs.xySum;
    }
    };

    // [[Rcpp::export]]
    NumericVector parallelVectorSum(Environment BM) {

    XPtr<FBM> xpBM = BM["address"];
    std::size_t n = xpBM->nrow();
    std::size_t m = xpBM->ncol();
    SubBMCode256Acc macc(xpBM, seq_len(n) - 1, seq_len(m) - 1, BM["code256"]);

    int grain = std::sqrt(n);

    Sum sum0(macc);
    NumericVector res(m);
    for (size_t j = 0; j < m; j++) {
    Sum sum(sum0, 0, j);
    parallelReduce(0, n, sum, grain);
    res[j] = sum.xySum;
    }

    return res;
    }


    /*** R
    RcppParallel::setThreadOptions(2)
    library(bigsnpr)
    snp <- snp_attachExtdata()
    G <- snp$genotypes
    test0 <- parallelVectorSum(G)

    G2 <- big_copy(G, ind.row = rep(rows_along(G), 500))
    dim(G2)
    RcppParallel::setThreadOptions(1)
    system.time(test1 <- parallelVectorSum(G2))
    testthat::expect_identical(test1, 500 * test0)
    RcppParallel::setThreadOptions(2)
    system.time(test2 <- parallelVectorSum(G2))
    testthat::expect_identical(test2, 500 * test0)
    */


    Output:



    > Rcpp::sourceCpp('tmp-tests/test-rcpp-parallel.cpp')

    > RcppParallel::setThreadOptions(2)

    > library(bigsnpr)

    > snp <- snp_attachExtdata()

    > G <- snp$genotypes

    > test0 <- parallelVectorSum(G)

    > G2 <- big_copy(G, ind.row = rep(rows_along(G), 500))

    > dim(G2)
    [1] 258500 4542

    > RcppParallel::setThreadOptions(1)

    > system.time(test1 <- parallelVectorSum(G2)) # 100 / 3
    user system elapsed
    3.621 0.423 4.045

    > testthat::expect_identical(test1, 500 * test0)

    > RcppParallel::setThreadOptions(2)

    > system.time(test2 <- parallelVectorSum(G2)) # 177 / 39
    user system elapsed
    39.958 42.590 53.516

    > testthat::expect_identical(test2, 500 * test0)


    Using one thread takes 4 seconds, and 53 seconds using 2 threads. I'm a bit lost of what could possibly be causing this large difference. Any idea??



    PS1: I've run this on two different computers (no other processes running).



    PS2: I know I should probably parallelize over j instead. I've tested it; it works well. Yet, in the real problem I have, iterations over j are not independent, so that it would be much easier to parallelize over i.










    share|improve this question



























      0












      0








      0








      I'm testing package RcppParallel to compute inner products for on-disk data (accessed via memory-mapping -- similar to package bigmemory).



      A "minimal" reproducing example:



      // [[Rcpp::depends(RcppParallel, BH, bigstatsr)]]
      #include <bigstatsr/BMCodeAcc.h>
      #include <RcppParallel.h>
      using namespace RcppParallel;

      struct Sum : public Worker {

      SubBMCode256Acc macc;
      double xySum;
      std::size_t j0, j;

      // constructors
      Sum(SubBMCode256Acc macc) :
      macc(macc), xySum(0), j0(0), j(0) {}
      Sum(const Sum& sum, std::size_t j0, std::size_t j) :
      macc(sum.macc), xySum(0), j0(j0), j(j) {}
      Sum(const Sum& sum, Split) :
      macc(sum.macc), xySum(0), j0(sum.j0), j(sum.j) {}

      // accumulate just the element of the range I've been asked to
      void operator()(std::size_t begin, std::size_t end) {
      for (std::size_t i = begin; i < end; i++) {
      xySum += macc(i, j) * macc(i, j0);
      }
      }
      // join results
      void join(const Sum& rhs) {
      xySum += rhs.xySum;
      }
      };

      // [[Rcpp::export]]
      NumericVector parallelVectorSum(Environment BM) {

      XPtr<FBM> xpBM = BM["address"];
      std::size_t n = xpBM->nrow();
      std::size_t m = xpBM->ncol();
      SubBMCode256Acc macc(xpBM, seq_len(n) - 1, seq_len(m) - 1, BM["code256"]);

      int grain = std::sqrt(n);

      Sum sum0(macc);
      NumericVector res(m);
      for (size_t j = 0; j < m; j++) {
      Sum sum(sum0, 0, j);
      parallelReduce(0, n, sum, grain);
      res[j] = sum.xySum;
      }

      return res;
      }


      /*** R
      RcppParallel::setThreadOptions(2)
      library(bigsnpr)
      snp <- snp_attachExtdata()
      G <- snp$genotypes
      test0 <- parallelVectorSum(G)

      G2 <- big_copy(G, ind.row = rep(rows_along(G), 500))
      dim(G2)
      RcppParallel::setThreadOptions(1)
      system.time(test1 <- parallelVectorSum(G2))
      testthat::expect_identical(test1, 500 * test0)
      RcppParallel::setThreadOptions(2)
      system.time(test2 <- parallelVectorSum(G2))
      testthat::expect_identical(test2, 500 * test0)
      */


      Output:



      > Rcpp::sourceCpp('tmp-tests/test-rcpp-parallel.cpp')

      > RcppParallel::setThreadOptions(2)

      > library(bigsnpr)

      > snp <- snp_attachExtdata()

      > G <- snp$genotypes

      > test0 <- parallelVectorSum(G)

      > G2 <- big_copy(G, ind.row = rep(rows_along(G), 500))

      > dim(G2)
      [1] 258500 4542

      > RcppParallel::setThreadOptions(1)

      > system.time(test1 <- parallelVectorSum(G2)) # 100 / 3
      user system elapsed
      3.621 0.423 4.045

      > testthat::expect_identical(test1, 500 * test0)

      > RcppParallel::setThreadOptions(2)

      > system.time(test2 <- parallelVectorSum(G2)) # 177 / 39
      user system elapsed
      39.958 42.590 53.516

      > testthat::expect_identical(test2, 500 * test0)


      Using one thread takes 4 seconds, and 53 seconds using 2 threads. I'm a bit lost of what could possibly be causing this large difference. Any idea??



      PS1: I've run this on two different computers (no other processes running).



      PS2: I know I should probably parallelize over j instead. I've tested it; it works well. Yet, in the real problem I have, iterations over j are not independent, so that it would be much easier to parallelize over i.










      share|improve this question
















      I'm testing package RcppParallel to compute inner products for on-disk data (accessed via memory-mapping -- similar to package bigmemory).



      A "minimal" reproducing example:



      // [[Rcpp::depends(RcppParallel, BH, bigstatsr)]]
      #include <bigstatsr/BMCodeAcc.h>
      #include <RcppParallel.h>
      using namespace RcppParallel;

      struct Sum : public Worker {

      SubBMCode256Acc macc;
      double xySum;
      std::size_t j0, j;

      // constructors
      Sum(SubBMCode256Acc macc) :
      macc(macc), xySum(0), j0(0), j(0) {}
      Sum(const Sum& sum, std::size_t j0, std::size_t j) :
      macc(sum.macc), xySum(0), j0(j0), j(j) {}
      Sum(const Sum& sum, Split) :
      macc(sum.macc), xySum(0), j0(sum.j0), j(sum.j) {}

      // accumulate just the element of the range I've been asked to
      void operator()(std::size_t begin, std::size_t end) {
      for (std::size_t i = begin; i < end; i++) {
      xySum += macc(i, j) * macc(i, j0);
      }
      }
      // join results
      void join(const Sum& rhs) {
      xySum += rhs.xySum;
      }
      };

      // [[Rcpp::export]]
      NumericVector parallelVectorSum(Environment BM) {

      XPtr<FBM> xpBM = BM["address"];
      std::size_t n = xpBM->nrow();
      std::size_t m = xpBM->ncol();
      SubBMCode256Acc macc(xpBM, seq_len(n) - 1, seq_len(m) - 1, BM["code256"]);

      int grain = std::sqrt(n);

      Sum sum0(macc);
      NumericVector res(m);
      for (size_t j = 0; j < m; j++) {
      Sum sum(sum0, 0, j);
      parallelReduce(0, n, sum, grain);
      res[j] = sum.xySum;
      }

      return res;
      }


      /*** R
      RcppParallel::setThreadOptions(2)
      library(bigsnpr)
      snp <- snp_attachExtdata()
      G <- snp$genotypes
      test0 <- parallelVectorSum(G)

      G2 <- big_copy(G, ind.row = rep(rows_along(G), 500))
      dim(G2)
      RcppParallel::setThreadOptions(1)
      system.time(test1 <- parallelVectorSum(G2))
      testthat::expect_identical(test1, 500 * test0)
      RcppParallel::setThreadOptions(2)
      system.time(test2 <- parallelVectorSum(G2))
      testthat::expect_identical(test2, 500 * test0)
      */


      Output:



      > Rcpp::sourceCpp('tmp-tests/test-rcpp-parallel.cpp')

      > RcppParallel::setThreadOptions(2)

      > library(bigsnpr)

      > snp <- snp_attachExtdata()

      > G <- snp$genotypes

      > test0 <- parallelVectorSum(G)

      > G2 <- big_copy(G, ind.row = rep(rows_along(G), 500))

      > dim(G2)
      [1] 258500 4542

      > RcppParallel::setThreadOptions(1)

      > system.time(test1 <- parallelVectorSum(G2)) # 100 / 3
      user system elapsed
      3.621 0.423 4.045

      > testthat::expect_identical(test1, 500 * test0)

      > RcppParallel::setThreadOptions(2)

      > system.time(test2 <- parallelVectorSum(G2)) # 177 / 39
      user system elapsed
      39.958 42.590 53.516

      > testthat::expect_identical(test2, 500 * test0)


      Using one thread takes 4 seconds, and 53 seconds using 2 threads. I'm a bit lost of what could possibly be causing this large difference. Any idea??



      PS1: I've run this on two different computers (no other processes running).



      PS2: I know I should probably parallelize over j instead. I've tested it; it works well. Yet, in the real problem I have, iterations over j are not independent, so that it would be much easier to parallelize over i.







      r parallel-processing rcppparallel






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 25 '18 at 21:18







      F. Privé

















      asked Nov 25 '18 at 20:54









      F. PrivéF. Privé

      6,9902943




      6,9902943
























          0






          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53471869%2frcppparallel-version-much-faster-when-using-only-one-thread%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53471869%2frcppparallel-version-much-faster-when-using-only-one-thread%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          404 Error Contact Form 7 ajax form submitting

          How to know if a Active Directory user can login interactively

          Refactoring coordinates for Minecraft Pi buildings written in Python