RcppParallel version much faster when using only one thread
I'm testing package RcppParallel to compute inner products for on-disk data (accessed via memory-mapping -- similar to package bigmemory).
A "minimal" reproducing example:
// [[Rcpp::depends(RcppParallel, BH, bigstatsr)]]
#include <bigstatsr/BMCodeAcc.h>
#include <RcppParallel.h>
using namespace RcppParallel;
struct Sum : public Worker {
SubBMCode256Acc macc;
double xySum;
std::size_t j0, j;
// constructors
Sum(SubBMCode256Acc macc) :
macc(macc), xySum(0), j0(0), j(0) {}
Sum(const Sum& sum, std::size_t j0, std::size_t j) :
macc(sum.macc), xySum(0), j0(j0), j(j) {}
Sum(const Sum& sum, Split) :
macc(sum.macc), xySum(0), j0(sum.j0), j(sum.j) {}
// accumulate just the element of the range I've been asked to
void operator()(std::size_t begin, std::size_t end) {
for (std::size_t i = begin; i < end; i++) {
xySum += macc(i, j) * macc(i, j0);
}
}
// join results
void join(const Sum& rhs) {
xySum += rhs.xySum;
}
};
// [[Rcpp::export]]
NumericVector parallelVectorSum(Environment BM) {
XPtr<FBM> xpBM = BM["address"];
std::size_t n = xpBM->nrow();
std::size_t m = xpBM->ncol();
SubBMCode256Acc macc(xpBM, seq_len(n) - 1, seq_len(m) - 1, BM["code256"]);
int grain = std::sqrt(n);
Sum sum0(macc);
NumericVector res(m);
for (size_t j = 0; j < m; j++) {
Sum sum(sum0, 0, j);
parallelReduce(0, n, sum, grain);
res[j] = sum.xySum;
}
return res;
}
/*** R
RcppParallel::setThreadOptions(2)
library(bigsnpr)
snp <- snp_attachExtdata()
G <- snp$genotypes
test0 <- parallelVectorSum(G)
G2 <- big_copy(G, ind.row = rep(rows_along(G), 500))
dim(G2)
RcppParallel::setThreadOptions(1)
system.time(test1 <- parallelVectorSum(G2))
testthat::expect_identical(test1, 500 * test0)
RcppParallel::setThreadOptions(2)
system.time(test2 <- parallelVectorSum(G2))
testthat::expect_identical(test2, 500 * test0)
*/
Output:
> Rcpp::sourceCpp('tmp-tests/test-rcpp-parallel.cpp')
> RcppParallel::setThreadOptions(2)
> library(bigsnpr)
> snp <- snp_attachExtdata()
> G <- snp$genotypes
> test0 <- parallelVectorSum(G)
> G2 <- big_copy(G, ind.row = rep(rows_along(G), 500))
> dim(G2)
[1] 258500 4542
> RcppParallel::setThreadOptions(1)
> system.time(test1 <- parallelVectorSum(G2)) # 100 / 3
user system elapsed
3.621 0.423 4.045
> testthat::expect_identical(test1, 500 * test0)
> RcppParallel::setThreadOptions(2)
> system.time(test2 <- parallelVectorSum(G2)) # 177 / 39
user system elapsed
39.958 42.590 53.516
> testthat::expect_identical(test2, 500 * test0)
Using one thread takes 4 seconds, and 53 seconds using 2 threads. I'm a bit lost of what could possibly be causing this large difference. Any idea??
PS1: I've run this on two different computers (no other processes running).
PS2: I know I should probably parallelize over j
instead. I've tested it; it works well. Yet, in the real problem I have, iterations over j
are not independent, so that it would be much easier to parallelize over i
.
r parallel-processing rcppparallel
add a comment |
I'm testing package RcppParallel to compute inner products for on-disk data (accessed via memory-mapping -- similar to package bigmemory).
A "minimal" reproducing example:
// [[Rcpp::depends(RcppParallel, BH, bigstatsr)]]
#include <bigstatsr/BMCodeAcc.h>
#include <RcppParallel.h>
using namespace RcppParallel;
struct Sum : public Worker {
SubBMCode256Acc macc;
double xySum;
std::size_t j0, j;
// constructors
Sum(SubBMCode256Acc macc) :
macc(macc), xySum(0), j0(0), j(0) {}
Sum(const Sum& sum, std::size_t j0, std::size_t j) :
macc(sum.macc), xySum(0), j0(j0), j(j) {}
Sum(const Sum& sum, Split) :
macc(sum.macc), xySum(0), j0(sum.j0), j(sum.j) {}
// accumulate just the element of the range I've been asked to
void operator()(std::size_t begin, std::size_t end) {
for (std::size_t i = begin; i < end; i++) {
xySum += macc(i, j) * macc(i, j0);
}
}
// join results
void join(const Sum& rhs) {
xySum += rhs.xySum;
}
};
// [[Rcpp::export]]
NumericVector parallelVectorSum(Environment BM) {
XPtr<FBM> xpBM = BM["address"];
std::size_t n = xpBM->nrow();
std::size_t m = xpBM->ncol();
SubBMCode256Acc macc(xpBM, seq_len(n) - 1, seq_len(m) - 1, BM["code256"]);
int grain = std::sqrt(n);
Sum sum0(macc);
NumericVector res(m);
for (size_t j = 0; j < m; j++) {
Sum sum(sum0, 0, j);
parallelReduce(0, n, sum, grain);
res[j] = sum.xySum;
}
return res;
}
/*** R
RcppParallel::setThreadOptions(2)
library(bigsnpr)
snp <- snp_attachExtdata()
G <- snp$genotypes
test0 <- parallelVectorSum(G)
G2 <- big_copy(G, ind.row = rep(rows_along(G), 500))
dim(G2)
RcppParallel::setThreadOptions(1)
system.time(test1 <- parallelVectorSum(G2))
testthat::expect_identical(test1, 500 * test0)
RcppParallel::setThreadOptions(2)
system.time(test2 <- parallelVectorSum(G2))
testthat::expect_identical(test2, 500 * test0)
*/
Output:
> Rcpp::sourceCpp('tmp-tests/test-rcpp-parallel.cpp')
> RcppParallel::setThreadOptions(2)
> library(bigsnpr)
> snp <- snp_attachExtdata()
> G <- snp$genotypes
> test0 <- parallelVectorSum(G)
> G2 <- big_copy(G, ind.row = rep(rows_along(G), 500))
> dim(G2)
[1] 258500 4542
> RcppParallel::setThreadOptions(1)
> system.time(test1 <- parallelVectorSum(G2)) # 100 / 3
user system elapsed
3.621 0.423 4.045
> testthat::expect_identical(test1, 500 * test0)
> RcppParallel::setThreadOptions(2)
> system.time(test2 <- parallelVectorSum(G2)) # 177 / 39
user system elapsed
39.958 42.590 53.516
> testthat::expect_identical(test2, 500 * test0)
Using one thread takes 4 seconds, and 53 seconds using 2 threads. I'm a bit lost of what could possibly be causing this large difference. Any idea??
PS1: I've run this on two different computers (no other processes running).
PS2: I know I should probably parallelize over j
instead. I've tested it; it works well. Yet, in the real problem I have, iterations over j
are not independent, so that it would be much easier to parallelize over i
.
r parallel-processing rcppparallel
add a comment |
I'm testing package RcppParallel to compute inner products for on-disk data (accessed via memory-mapping -- similar to package bigmemory).
A "minimal" reproducing example:
// [[Rcpp::depends(RcppParallel, BH, bigstatsr)]]
#include <bigstatsr/BMCodeAcc.h>
#include <RcppParallel.h>
using namespace RcppParallel;
struct Sum : public Worker {
SubBMCode256Acc macc;
double xySum;
std::size_t j0, j;
// constructors
Sum(SubBMCode256Acc macc) :
macc(macc), xySum(0), j0(0), j(0) {}
Sum(const Sum& sum, std::size_t j0, std::size_t j) :
macc(sum.macc), xySum(0), j0(j0), j(j) {}
Sum(const Sum& sum, Split) :
macc(sum.macc), xySum(0), j0(sum.j0), j(sum.j) {}
// accumulate just the element of the range I've been asked to
void operator()(std::size_t begin, std::size_t end) {
for (std::size_t i = begin; i < end; i++) {
xySum += macc(i, j) * macc(i, j0);
}
}
// join results
void join(const Sum& rhs) {
xySum += rhs.xySum;
}
};
// [[Rcpp::export]]
NumericVector parallelVectorSum(Environment BM) {
XPtr<FBM> xpBM = BM["address"];
std::size_t n = xpBM->nrow();
std::size_t m = xpBM->ncol();
SubBMCode256Acc macc(xpBM, seq_len(n) - 1, seq_len(m) - 1, BM["code256"]);
int grain = std::sqrt(n);
Sum sum0(macc);
NumericVector res(m);
for (size_t j = 0; j < m; j++) {
Sum sum(sum0, 0, j);
parallelReduce(0, n, sum, grain);
res[j] = sum.xySum;
}
return res;
}
/*** R
RcppParallel::setThreadOptions(2)
library(bigsnpr)
snp <- snp_attachExtdata()
G <- snp$genotypes
test0 <- parallelVectorSum(G)
G2 <- big_copy(G, ind.row = rep(rows_along(G), 500))
dim(G2)
RcppParallel::setThreadOptions(1)
system.time(test1 <- parallelVectorSum(G2))
testthat::expect_identical(test1, 500 * test0)
RcppParallel::setThreadOptions(2)
system.time(test2 <- parallelVectorSum(G2))
testthat::expect_identical(test2, 500 * test0)
*/
Output:
> Rcpp::sourceCpp('tmp-tests/test-rcpp-parallel.cpp')
> RcppParallel::setThreadOptions(2)
> library(bigsnpr)
> snp <- snp_attachExtdata()
> G <- snp$genotypes
> test0 <- parallelVectorSum(G)
> G2 <- big_copy(G, ind.row = rep(rows_along(G), 500))
> dim(G2)
[1] 258500 4542
> RcppParallel::setThreadOptions(1)
> system.time(test1 <- parallelVectorSum(G2)) # 100 / 3
user system elapsed
3.621 0.423 4.045
> testthat::expect_identical(test1, 500 * test0)
> RcppParallel::setThreadOptions(2)
> system.time(test2 <- parallelVectorSum(G2)) # 177 / 39
user system elapsed
39.958 42.590 53.516
> testthat::expect_identical(test2, 500 * test0)
Using one thread takes 4 seconds, and 53 seconds using 2 threads. I'm a bit lost of what could possibly be causing this large difference. Any idea??
PS1: I've run this on two different computers (no other processes running).
PS2: I know I should probably parallelize over j
instead. I've tested it; it works well. Yet, in the real problem I have, iterations over j
are not independent, so that it would be much easier to parallelize over i
.
r parallel-processing rcppparallel
I'm testing package RcppParallel to compute inner products for on-disk data (accessed via memory-mapping -- similar to package bigmemory).
A "minimal" reproducing example:
// [[Rcpp::depends(RcppParallel, BH, bigstatsr)]]
#include <bigstatsr/BMCodeAcc.h>
#include <RcppParallel.h>
using namespace RcppParallel;
struct Sum : public Worker {
SubBMCode256Acc macc;
double xySum;
std::size_t j0, j;
// constructors
Sum(SubBMCode256Acc macc) :
macc(macc), xySum(0), j0(0), j(0) {}
Sum(const Sum& sum, std::size_t j0, std::size_t j) :
macc(sum.macc), xySum(0), j0(j0), j(j) {}
Sum(const Sum& sum, Split) :
macc(sum.macc), xySum(0), j0(sum.j0), j(sum.j) {}
// accumulate just the element of the range I've been asked to
void operator()(std::size_t begin, std::size_t end) {
for (std::size_t i = begin; i < end; i++) {
xySum += macc(i, j) * macc(i, j0);
}
}
// join results
void join(const Sum& rhs) {
xySum += rhs.xySum;
}
};
// [[Rcpp::export]]
NumericVector parallelVectorSum(Environment BM) {
XPtr<FBM> xpBM = BM["address"];
std::size_t n = xpBM->nrow();
std::size_t m = xpBM->ncol();
SubBMCode256Acc macc(xpBM, seq_len(n) - 1, seq_len(m) - 1, BM["code256"]);
int grain = std::sqrt(n);
Sum sum0(macc);
NumericVector res(m);
for (size_t j = 0; j < m; j++) {
Sum sum(sum0, 0, j);
parallelReduce(0, n, sum, grain);
res[j] = sum.xySum;
}
return res;
}
/*** R
RcppParallel::setThreadOptions(2)
library(bigsnpr)
snp <- snp_attachExtdata()
G <- snp$genotypes
test0 <- parallelVectorSum(G)
G2 <- big_copy(G, ind.row = rep(rows_along(G), 500))
dim(G2)
RcppParallel::setThreadOptions(1)
system.time(test1 <- parallelVectorSum(G2))
testthat::expect_identical(test1, 500 * test0)
RcppParallel::setThreadOptions(2)
system.time(test2 <- parallelVectorSum(G2))
testthat::expect_identical(test2, 500 * test0)
*/
Output:
> Rcpp::sourceCpp('tmp-tests/test-rcpp-parallel.cpp')
> RcppParallel::setThreadOptions(2)
> library(bigsnpr)
> snp <- snp_attachExtdata()
> G <- snp$genotypes
> test0 <- parallelVectorSum(G)
> G2 <- big_copy(G, ind.row = rep(rows_along(G), 500))
> dim(G2)
[1] 258500 4542
> RcppParallel::setThreadOptions(1)
> system.time(test1 <- parallelVectorSum(G2)) # 100 / 3
user system elapsed
3.621 0.423 4.045
> testthat::expect_identical(test1, 500 * test0)
> RcppParallel::setThreadOptions(2)
> system.time(test2 <- parallelVectorSum(G2)) # 177 / 39
user system elapsed
39.958 42.590 53.516
> testthat::expect_identical(test2, 500 * test0)
Using one thread takes 4 seconds, and 53 seconds using 2 threads. I'm a bit lost of what could possibly be causing this large difference. Any idea??
PS1: I've run this on two different computers (no other processes running).
PS2: I know I should probably parallelize over j
instead. I've tested it; it works well. Yet, in the real problem I have, iterations over j
are not independent, so that it would be much easier to parallelize over i
.
r parallel-processing rcppparallel
r parallel-processing rcppparallel
edited Nov 25 '18 at 21:18
F. Privé
asked Nov 25 '18 at 20:54
F. PrivéF. Privé
6,9902943
6,9902943
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53471869%2frcppparallel-version-much-faster-when-using-only-one-thread%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53471869%2frcppparallel-version-much-faster-when-using-only-one-thread%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown