Dijkstra's algorithm using C++ STL
$begingroup$
I'm implementing Dijkstra's algorithm using C++ STL.
Input
n e (number of vertices and the number of edges)
followed by e lines of edges and their weights w
followed by u and v the shortest path between which is to be found out
Output
A single integer representing the shortest path between u and v
My Approach
adj
: adjacency list representation of the graph
cost
: weights associated with each vertex
I'm implementing my own priority queue, which prioritizes the vertices based on their dist
values
following are the functions I have implemented:
distance (vector<vector<int> > &adj, vector<vector<int> > &cost, int s, int t)
main logic for the algorithm is implemented herevector<int> makequeue (vector<vector<int>> adj, vector<int> dist)
returns an initial min-heap data structure of the vertices (prioritized according to the dist values)int extract_min (vector<int> &H, vector<int> dist)
returns and deletes the minimum element from the min-heapvoid decrease_key (vector <int> &H, int i, int key, vector<int> dist)
takes arguments as: the heap, index of the element for which key is to be changed (i), the key value, and the dist arrayvoid min_heapify (vector<int> &H, int i, vector<int> dist)
Code
#include <iostream>
#include <vector>
#include <limits>
#include <algorithm>
using std::vector;
using std::cout;
int heapsize;
int parent (int i) {
if (i%2 == 0) return (i/2) - 1;
return i/2;
}
void min_heapify (vector<int> &H, int i, vector<int> dist) {
int l = (2*i) + 1;
int r = (2*i) + 2;
int smallest = i;
if (l < heapsize && dist[H[l]] < dist[H[i]]) smallest = l;
if (r < heapsize && dist[H[r]] < dist[H[i]]) smallest = r;
if (smallest != i) {
std::swap(H[i], H[smallest]);
min_heapify(H, smallest, dist);
}
}
void decrease_key (vector <int> &H, int i, int key, vector<int> dist) {
while (i < heapsize && i > 0 && dist[H[parent(i)]] > dist[H[i]]){
std::swap (H[i], H[parent(i)]);
i = parent(i);
}
}
int extract_min (vector<int> &H, vector<int> dist) {
if (heapsize >= 1) {
int min = H[0];
H[0] = H[heapsize - 1];
H[heapsize - 1] = -1;
heapsize -- ;
min_heapify (H, 0, dist);
return min;
}
}
vector<int> makequeue (vector<vector<int>> adj, vector<int> dist) {
vector<int> H;
heapsize = adj.size();
for (int i = 0; i < adj.size(); i ++) H.push_back(i);
for (int i = H.size() / 2; i >= 0; i --) {
min_heapify (H, i, dist);
}
return H;
}
int distance(vector<vector<int> > &adj, vector<vector<int> > &cost, int s, int t) {
vector <int> dist (adj.size(), std::numeric_limits<int>::max());
dist [s] = 0;
vector<int> H = makequeue (adj, dist);
int u;
while (heapsize != 0) {
u = extract_min (H, dist);
for (int i = 0; i < adj[u].size(); i ++) {
if ( (dist[u] != std::numeric_limits<int>::max()) && (dist[adj[u][i]] > dist[u] + cost[u][i])) {
dist[adj[u][i]] = dist[u] + cost[u][i];
vector<int>::iterator it = find(H.begin(), H.begin() + heapsize, adj[u][i]);
decrease_key (H, std::distance(H.begin(), it) , dist[adj[u][i]], dist);
}
}
}
if (dist[t] == std::numeric_limits<int>::max()) return -1;
else return dist[t];
}
int main() {
int n, m;
std::cin >> n >> m;
vector<vector<int> > adj(n, vector<int>());
vector<vector<int> > cost(n, vector<int>());
for (int i = 0; i < m; i++) {
int x, y, w;
std::cin >> x >> y >> w;
adj[x - 1].push_back(y - 1);
cost[x - 1].push_back(w);
}
int s, t;
std::cin >> s >> t;
s--, t--;
std::cout << distance(adj, cost, s, t);
}
Example
Input
10 9
1 2 1
2 3 1
3 4 1
4 5 1
5 6 1
6 7 1
7 8 1
8 9 1
9 10 1
1 10
Output
9
Concern
the platform where I wish to submit the code gives wrong answer for a particular test case, I haven't been able to figure out where the problem might lie
My best guess is in the decrease_key
function since I'm using a workaround here - by first performing a find
to determine the index of the vertex. (Something similar to what was asked here: https://stackoverflow.com/questions/17009056/how-to-implement-ologn-decrease-key-operation-for-min-heap-based-priority-queu)
I'm not very sure how to use the priority_queue container in C++ STL, therefore I went with my own implementation. I'd prefer if someone could guide me as to what is wrong with the code I've written.
c++ algorithm
$endgroup$
add a comment |
$begingroup$
I'm implementing Dijkstra's algorithm using C++ STL.
Input
n e (number of vertices and the number of edges)
followed by e lines of edges and their weights w
followed by u and v the shortest path between which is to be found out
Output
A single integer representing the shortest path between u and v
My Approach
adj
: adjacency list representation of the graph
cost
: weights associated with each vertex
I'm implementing my own priority queue, which prioritizes the vertices based on their dist
values
following are the functions I have implemented:
distance (vector<vector<int> > &adj, vector<vector<int> > &cost, int s, int t)
main logic for the algorithm is implemented herevector<int> makequeue (vector<vector<int>> adj, vector<int> dist)
returns an initial min-heap data structure of the vertices (prioritized according to the dist values)int extract_min (vector<int> &H, vector<int> dist)
returns and deletes the minimum element from the min-heapvoid decrease_key (vector <int> &H, int i, int key, vector<int> dist)
takes arguments as: the heap, index of the element for which key is to be changed (i), the key value, and the dist arrayvoid min_heapify (vector<int> &H, int i, vector<int> dist)
Code
#include <iostream>
#include <vector>
#include <limits>
#include <algorithm>
using std::vector;
using std::cout;
int heapsize;
int parent (int i) {
if (i%2 == 0) return (i/2) - 1;
return i/2;
}
void min_heapify (vector<int> &H, int i, vector<int> dist) {
int l = (2*i) + 1;
int r = (2*i) + 2;
int smallest = i;
if (l < heapsize && dist[H[l]] < dist[H[i]]) smallest = l;
if (r < heapsize && dist[H[r]] < dist[H[i]]) smallest = r;
if (smallest != i) {
std::swap(H[i], H[smallest]);
min_heapify(H, smallest, dist);
}
}
void decrease_key (vector <int> &H, int i, int key, vector<int> dist) {
while (i < heapsize && i > 0 && dist[H[parent(i)]] > dist[H[i]]){
std::swap (H[i], H[parent(i)]);
i = parent(i);
}
}
int extract_min (vector<int> &H, vector<int> dist) {
if (heapsize >= 1) {
int min = H[0];
H[0] = H[heapsize - 1];
H[heapsize - 1] = -1;
heapsize -- ;
min_heapify (H, 0, dist);
return min;
}
}
vector<int> makequeue (vector<vector<int>> adj, vector<int> dist) {
vector<int> H;
heapsize = adj.size();
for (int i = 0; i < adj.size(); i ++) H.push_back(i);
for (int i = H.size() / 2; i >= 0; i --) {
min_heapify (H, i, dist);
}
return H;
}
int distance(vector<vector<int> > &adj, vector<vector<int> > &cost, int s, int t) {
vector <int> dist (adj.size(), std::numeric_limits<int>::max());
dist [s] = 0;
vector<int> H = makequeue (adj, dist);
int u;
while (heapsize != 0) {
u = extract_min (H, dist);
for (int i = 0; i < adj[u].size(); i ++) {
if ( (dist[u] != std::numeric_limits<int>::max()) && (dist[adj[u][i]] > dist[u] + cost[u][i])) {
dist[adj[u][i]] = dist[u] + cost[u][i];
vector<int>::iterator it = find(H.begin(), H.begin() + heapsize, adj[u][i]);
decrease_key (H, std::distance(H.begin(), it) , dist[adj[u][i]], dist);
}
}
}
if (dist[t] == std::numeric_limits<int>::max()) return -1;
else return dist[t];
}
int main() {
int n, m;
std::cin >> n >> m;
vector<vector<int> > adj(n, vector<int>());
vector<vector<int> > cost(n, vector<int>());
for (int i = 0; i < m; i++) {
int x, y, w;
std::cin >> x >> y >> w;
adj[x - 1].push_back(y - 1);
cost[x - 1].push_back(w);
}
int s, t;
std::cin >> s >> t;
s--, t--;
std::cout << distance(adj, cost, s, t);
}
Example
Input
10 9
1 2 1
2 3 1
3 4 1
4 5 1
5 6 1
6 7 1
7 8 1
8 9 1
9 10 1
1 10
Output
9
Concern
the platform where I wish to submit the code gives wrong answer for a particular test case, I haven't been able to figure out where the problem might lie
My best guess is in the decrease_key
function since I'm using a workaround here - by first performing a find
to determine the index of the vertex. (Something similar to what was asked here: https://stackoverflow.com/questions/17009056/how-to-implement-ologn-decrease-key-operation-for-min-heap-based-priority-queu)
I'm not very sure how to use the priority_queue container in C++ STL, therefore I went with my own implementation. I'd prefer if someone could guide me as to what is wrong with the code I've written.
c++ algorithm
$endgroup$
add a comment |
$begingroup$
I'm implementing Dijkstra's algorithm using C++ STL.
Input
n e (number of vertices and the number of edges)
followed by e lines of edges and their weights w
followed by u and v the shortest path between which is to be found out
Output
A single integer representing the shortest path between u and v
My Approach
adj
: adjacency list representation of the graph
cost
: weights associated with each vertex
I'm implementing my own priority queue, which prioritizes the vertices based on their dist
values
following are the functions I have implemented:
distance (vector<vector<int> > &adj, vector<vector<int> > &cost, int s, int t)
main logic for the algorithm is implemented herevector<int> makequeue (vector<vector<int>> adj, vector<int> dist)
returns an initial min-heap data structure of the vertices (prioritized according to the dist values)int extract_min (vector<int> &H, vector<int> dist)
returns and deletes the minimum element from the min-heapvoid decrease_key (vector <int> &H, int i, int key, vector<int> dist)
takes arguments as: the heap, index of the element for which key is to be changed (i), the key value, and the dist arrayvoid min_heapify (vector<int> &H, int i, vector<int> dist)
Code
#include <iostream>
#include <vector>
#include <limits>
#include <algorithm>
using std::vector;
using std::cout;
int heapsize;
int parent (int i) {
if (i%2 == 0) return (i/2) - 1;
return i/2;
}
void min_heapify (vector<int> &H, int i, vector<int> dist) {
int l = (2*i) + 1;
int r = (2*i) + 2;
int smallest = i;
if (l < heapsize && dist[H[l]] < dist[H[i]]) smallest = l;
if (r < heapsize && dist[H[r]] < dist[H[i]]) smallest = r;
if (smallest != i) {
std::swap(H[i], H[smallest]);
min_heapify(H, smallest, dist);
}
}
void decrease_key (vector <int> &H, int i, int key, vector<int> dist) {
while (i < heapsize && i > 0 && dist[H[parent(i)]] > dist[H[i]]){
std::swap (H[i], H[parent(i)]);
i = parent(i);
}
}
int extract_min (vector<int> &H, vector<int> dist) {
if (heapsize >= 1) {
int min = H[0];
H[0] = H[heapsize - 1];
H[heapsize - 1] = -1;
heapsize -- ;
min_heapify (H, 0, dist);
return min;
}
}
vector<int> makequeue (vector<vector<int>> adj, vector<int> dist) {
vector<int> H;
heapsize = adj.size();
for (int i = 0; i < adj.size(); i ++) H.push_back(i);
for (int i = H.size() / 2; i >= 0; i --) {
min_heapify (H, i, dist);
}
return H;
}
int distance(vector<vector<int> > &adj, vector<vector<int> > &cost, int s, int t) {
vector <int> dist (adj.size(), std::numeric_limits<int>::max());
dist [s] = 0;
vector<int> H = makequeue (adj, dist);
int u;
while (heapsize != 0) {
u = extract_min (H, dist);
for (int i = 0; i < adj[u].size(); i ++) {
if ( (dist[u] != std::numeric_limits<int>::max()) && (dist[adj[u][i]] > dist[u] + cost[u][i])) {
dist[adj[u][i]] = dist[u] + cost[u][i];
vector<int>::iterator it = find(H.begin(), H.begin() + heapsize, adj[u][i]);
decrease_key (H, std::distance(H.begin(), it) , dist[adj[u][i]], dist);
}
}
}
if (dist[t] == std::numeric_limits<int>::max()) return -1;
else return dist[t];
}
int main() {
int n, m;
std::cin >> n >> m;
vector<vector<int> > adj(n, vector<int>());
vector<vector<int> > cost(n, vector<int>());
for (int i = 0; i < m; i++) {
int x, y, w;
std::cin >> x >> y >> w;
adj[x - 1].push_back(y - 1);
cost[x - 1].push_back(w);
}
int s, t;
std::cin >> s >> t;
s--, t--;
std::cout << distance(adj, cost, s, t);
}
Example
Input
10 9
1 2 1
2 3 1
3 4 1
4 5 1
5 6 1
6 7 1
7 8 1
8 9 1
9 10 1
1 10
Output
9
Concern
the platform where I wish to submit the code gives wrong answer for a particular test case, I haven't been able to figure out where the problem might lie
My best guess is in the decrease_key
function since I'm using a workaround here - by first performing a find
to determine the index of the vertex. (Something similar to what was asked here: https://stackoverflow.com/questions/17009056/how-to-implement-ologn-decrease-key-operation-for-min-heap-based-priority-queu)
I'm not very sure how to use the priority_queue container in C++ STL, therefore I went with my own implementation. I'd prefer if someone could guide me as to what is wrong with the code I've written.
c++ algorithm
$endgroup$
I'm implementing Dijkstra's algorithm using C++ STL.
Input
n e (number of vertices and the number of edges)
followed by e lines of edges and their weights w
followed by u and v the shortest path between which is to be found out
Output
A single integer representing the shortest path between u and v
My Approach
adj
: adjacency list representation of the graph
cost
: weights associated with each vertex
I'm implementing my own priority queue, which prioritizes the vertices based on their dist
values
following are the functions I have implemented:
distance (vector<vector<int> > &adj, vector<vector<int> > &cost, int s, int t)
main logic for the algorithm is implemented herevector<int> makequeue (vector<vector<int>> adj, vector<int> dist)
returns an initial min-heap data structure of the vertices (prioritized according to the dist values)int extract_min (vector<int> &H, vector<int> dist)
returns and deletes the minimum element from the min-heapvoid decrease_key (vector <int> &H, int i, int key, vector<int> dist)
takes arguments as: the heap, index of the element for which key is to be changed (i), the key value, and the dist arrayvoid min_heapify (vector<int> &H, int i, vector<int> dist)
Code
#include <iostream>
#include <vector>
#include <limits>
#include <algorithm>
using std::vector;
using std::cout;
int heapsize;
int parent (int i) {
if (i%2 == 0) return (i/2) - 1;
return i/2;
}
void min_heapify (vector<int> &H, int i, vector<int> dist) {
int l = (2*i) + 1;
int r = (2*i) + 2;
int smallest = i;
if (l < heapsize && dist[H[l]] < dist[H[i]]) smallest = l;
if (r < heapsize && dist[H[r]] < dist[H[i]]) smallest = r;
if (smallest != i) {
std::swap(H[i], H[smallest]);
min_heapify(H, smallest, dist);
}
}
void decrease_key (vector <int> &H, int i, int key, vector<int> dist) {
while (i < heapsize && i > 0 && dist[H[parent(i)]] > dist[H[i]]){
std::swap (H[i], H[parent(i)]);
i = parent(i);
}
}
int extract_min (vector<int> &H, vector<int> dist) {
if (heapsize >= 1) {
int min = H[0];
H[0] = H[heapsize - 1];
H[heapsize - 1] = -1;
heapsize -- ;
min_heapify (H, 0, dist);
return min;
}
}
vector<int> makequeue (vector<vector<int>> adj, vector<int> dist) {
vector<int> H;
heapsize = adj.size();
for (int i = 0; i < adj.size(); i ++) H.push_back(i);
for (int i = H.size() / 2; i >= 0; i --) {
min_heapify (H, i, dist);
}
return H;
}
int distance(vector<vector<int> > &adj, vector<vector<int> > &cost, int s, int t) {
vector <int> dist (adj.size(), std::numeric_limits<int>::max());
dist [s] = 0;
vector<int> H = makequeue (adj, dist);
int u;
while (heapsize != 0) {
u = extract_min (H, dist);
for (int i = 0; i < adj[u].size(); i ++) {
if ( (dist[u] != std::numeric_limits<int>::max()) && (dist[adj[u][i]] > dist[u] + cost[u][i])) {
dist[adj[u][i]] = dist[u] + cost[u][i];
vector<int>::iterator it = find(H.begin(), H.begin() + heapsize, adj[u][i]);
decrease_key (H, std::distance(H.begin(), it) , dist[adj[u][i]], dist);
}
}
}
if (dist[t] == std::numeric_limits<int>::max()) return -1;
else return dist[t];
}
int main() {
int n, m;
std::cin >> n >> m;
vector<vector<int> > adj(n, vector<int>());
vector<vector<int> > cost(n, vector<int>());
for (int i = 0; i < m; i++) {
int x, y, w;
std::cin >> x >> y >> w;
adj[x - 1].push_back(y - 1);
cost[x - 1].push_back(w);
}
int s, t;
std::cin >> s >> t;
s--, t--;
std::cout << distance(adj, cost, s, t);
}
Example
Input
10 9
1 2 1
2 3 1
3 4 1
4 5 1
5 6 1
6 7 1
7 8 1
8 9 1
9 10 1
1 10
Output
9
Concern
the platform where I wish to submit the code gives wrong answer for a particular test case, I haven't been able to figure out where the problem might lie
My best guess is in the decrease_key
function since I'm using a workaround here - by first performing a find
to determine the index of the vertex. (Something similar to what was asked here: https://stackoverflow.com/questions/17009056/how-to-implement-ologn-decrease-key-operation-for-min-heap-based-priority-queu)
I'm not very sure how to use the priority_queue container in C++ STL, therefore I went with my own implementation. I'd prefer if someone could guide me as to what is wrong with the code I've written.
c++ algorithm
c++ algorithm
asked 7 mins ago
nglglhtrnglglhtr
614
614
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "196"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f214152%2fdijkstras-algorithm-using-c-stl%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f214152%2fdijkstras-algorithm-using-c-stl%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown