Pandas: conditional counting when multiple conditions are met











up vote
2
down vote

favorite












I have a dataframe as follows:



                      dtm        f           C      A   B
0 2018-03-01 00:00:00 +0000 50.135 9.000000 0 0
1 2018-03-01 00:00:01 +0000 50.130 9.000000 0 0
2 2018-03-01 00:00:02 +0000 50.120 9.000000 0 0
3 2018-03-01 00:00:03 +0000 50.112 9.000000 0 0
4 2018-03-01 00:00:04 +0000 50.102 9.000000 0 0
5 2018-03-01 00:00:05 +0000 50.097 9.000000 0 0
6 2018-03-01 00:00:06 +0000 11.095 9.000000 0 0
7 2018-03-01 00:00:07 +0000 11.095 9.000000 0 0
8 2018-03-01 00:00:08 +0000 11.092 9.000000 0 0
9 2018-03-01 00:00:09 +0000 11.095 9.000000 0 0
10 2018-03-01 00:00:10 +0000 11.097 5.000000 0 0
11 2018-03-01 00:00:11 +0000 11.097 5.000000 0 0
12 2018-03-01 00:00:12 +0000 11.097 5.000000 0 0
13 2018-03-01 00:00:13 +0000 50.100 5.000000 0 0
14 2018-03-01 00:00:14 +0000 50.102 5.000000 0 0
15 2018-03-01 00:00:15 +0000 50.105 5.000000 0 0
16 2018-03-01 00:00:16 +0000 50.102 5.000000 0 0
17 2018-03-01 00:00:17 +0000 50.102 5.000000 0 0


A and B are two Counters that work like this:




  • if((f>=50) or (f<50 & C<8)) then A increase by 1


  • if f<50 and C>8 then B increase by 1



the expected outcome should be like:



                      dtm           f         C     A   B
0 2018-03-01 00:00:00 +0000 50.135 9.000000 0 0
1 2018-03-01 00:00:01 +0000 50.130 9.000000 1 0
2 2018-03-01 00:00:02 +0000 50.120 9.000000 2 0
3 2018-03-01 00:00:03 +0000 50.112 9.000000 3 0
4 2018-03-01 00:00:04 +0000 50.102 9.000000 4 0
5 2018-03-01 00:00:05 +0000 50.097 9.000000 5 0
6 2018-03-01 00:00:06 +0000 11.095 9.000000 5 1
7 2018-03-01 00:00:07 +0000 11.095 9.000000 5 2
8 2018-03-01 00:00:08 +0000 11.092 9.000000 5 3
9 2018-03-01 00:00:09 +0000 11.095 9.000000 5 4
10 2018-03-01 00:00:10 +0000 11.097 5.000000 6 4
11 2018-03-01 00:00:11 +0000 11.097 5.000000 7 4
12 2018-03-01 00:00:12 +0000 11.097 5.000000 8 4
13 2018-03-01 00:00:13 +0000 50.100 5.000000 9 4
14 2018-03-01 00:00:14 +0000 50.102 5.000000 10 4
15 2018-03-01 00:00:15 +0000 50.105 5.000000 11 4
16 2018-03-01 00:00:16 +0000 50.102 5.000000 12 4
17 2018-03-01 00:00:17 +0000 50.102 5.000000 13 4


Please notice that when a A increases B keeps its value, and the other way around. They do not reset. Any idea about that?



Thank you in advance!










share|improve this question


























    up vote
    2
    down vote

    favorite












    I have a dataframe as follows:



                          dtm        f           C      A   B
    0 2018-03-01 00:00:00 +0000 50.135 9.000000 0 0
    1 2018-03-01 00:00:01 +0000 50.130 9.000000 0 0
    2 2018-03-01 00:00:02 +0000 50.120 9.000000 0 0
    3 2018-03-01 00:00:03 +0000 50.112 9.000000 0 0
    4 2018-03-01 00:00:04 +0000 50.102 9.000000 0 0
    5 2018-03-01 00:00:05 +0000 50.097 9.000000 0 0
    6 2018-03-01 00:00:06 +0000 11.095 9.000000 0 0
    7 2018-03-01 00:00:07 +0000 11.095 9.000000 0 0
    8 2018-03-01 00:00:08 +0000 11.092 9.000000 0 0
    9 2018-03-01 00:00:09 +0000 11.095 9.000000 0 0
    10 2018-03-01 00:00:10 +0000 11.097 5.000000 0 0
    11 2018-03-01 00:00:11 +0000 11.097 5.000000 0 0
    12 2018-03-01 00:00:12 +0000 11.097 5.000000 0 0
    13 2018-03-01 00:00:13 +0000 50.100 5.000000 0 0
    14 2018-03-01 00:00:14 +0000 50.102 5.000000 0 0
    15 2018-03-01 00:00:15 +0000 50.105 5.000000 0 0
    16 2018-03-01 00:00:16 +0000 50.102 5.000000 0 0
    17 2018-03-01 00:00:17 +0000 50.102 5.000000 0 0


    A and B are two Counters that work like this:




    • if((f>=50) or (f<50 & C<8)) then A increase by 1


    • if f<50 and C>8 then B increase by 1



    the expected outcome should be like:



                          dtm           f         C     A   B
    0 2018-03-01 00:00:00 +0000 50.135 9.000000 0 0
    1 2018-03-01 00:00:01 +0000 50.130 9.000000 1 0
    2 2018-03-01 00:00:02 +0000 50.120 9.000000 2 0
    3 2018-03-01 00:00:03 +0000 50.112 9.000000 3 0
    4 2018-03-01 00:00:04 +0000 50.102 9.000000 4 0
    5 2018-03-01 00:00:05 +0000 50.097 9.000000 5 0
    6 2018-03-01 00:00:06 +0000 11.095 9.000000 5 1
    7 2018-03-01 00:00:07 +0000 11.095 9.000000 5 2
    8 2018-03-01 00:00:08 +0000 11.092 9.000000 5 3
    9 2018-03-01 00:00:09 +0000 11.095 9.000000 5 4
    10 2018-03-01 00:00:10 +0000 11.097 5.000000 6 4
    11 2018-03-01 00:00:11 +0000 11.097 5.000000 7 4
    12 2018-03-01 00:00:12 +0000 11.097 5.000000 8 4
    13 2018-03-01 00:00:13 +0000 50.100 5.000000 9 4
    14 2018-03-01 00:00:14 +0000 50.102 5.000000 10 4
    15 2018-03-01 00:00:15 +0000 50.105 5.000000 11 4
    16 2018-03-01 00:00:16 +0000 50.102 5.000000 12 4
    17 2018-03-01 00:00:17 +0000 50.102 5.000000 13 4


    Please notice that when a A increases B keeps its value, and the other way around. They do not reset. Any idea about that?



    Thank you in advance!










    share|improve this question
























      up vote
      2
      down vote

      favorite









      up vote
      2
      down vote

      favorite











      I have a dataframe as follows:



                            dtm        f           C      A   B
      0 2018-03-01 00:00:00 +0000 50.135 9.000000 0 0
      1 2018-03-01 00:00:01 +0000 50.130 9.000000 0 0
      2 2018-03-01 00:00:02 +0000 50.120 9.000000 0 0
      3 2018-03-01 00:00:03 +0000 50.112 9.000000 0 0
      4 2018-03-01 00:00:04 +0000 50.102 9.000000 0 0
      5 2018-03-01 00:00:05 +0000 50.097 9.000000 0 0
      6 2018-03-01 00:00:06 +0000 11.095 9.000000 0 0
      7 2018-03-01 00:00:07 +0000 11.095 9.000000 0 0
      8 2018-03-01 00:00:08 +0000 11.092 9.000000 0 0
      9 2018-03-01 00:00:09 +0000 11.095 9.000000 0 0
      10 2018-03-01 00:00:10 +0000 11.097 5.000000 0 0
      11 2018-03-01 00:00:11 +0000 11.097 5.000000 0 0
      12 2018-03-01 00:00:12 +0000 11.097 5.000000 0 0
      13 2018-03-01 00:00:13 +0000 50.100 5.000000 0 0
      14 2018-03-01 00:00:14 +0000 50.102 5.000000 0 0
      15 2018-03-01 00:00:15 +0000 50.105 5.000000 0 0
      16 2018-03-01 00:00:16 +0000 50.102 5.000000 0 0
      17 2018-03-01 00:00:17 +0000 50.102 5.000000 0 0


      A and B are two Counters that work like this:




      • if((f>=50) or (f<50 & C<8)) then A increase by 1


      • if f<50 and C>8 then B increase by 1



      the expected outcome should be like:



                            dtm           f         C     A   B
      0 2018-03-01 00:00:00 +0000 50.135 9.000000 0 0
      1 2018-03-01 00:00:01 +0000 50.130 9.000000 1 0
      2 2018-03-01 00:00:02 +0000 50.120 9.000000 2 0
      3 2018-03-01 00:00:03 +0000 50.112 9.000000 3 0
      4 2018-03-01 00:00:04 +0000 50.102 9.000000 4 0
      5 2018-03-01 00:00:05 +0000 50.097 9.000000 5 0
      6 2018-03-01 00:00:06 +0000 11.095 9.000000 5 1
      7 2018-03-01 00:00:07 +0000 11.095 9.000000 5 2
      8 2018-03-01 00:00:08 +0000 11.092 9.000000 5 3
      9 2018-03-01 00:00:09 +0000 11.095 9.000000 5 4
      10 2018-03-01 00:00:10 +0000 11.097 5.000000 6 4
      11 2018-03-01 00:00:11 +0000 11.097 5.000000 7 4
      12 2018-03-01 00:00:12 +0000 11.097 5.000000 8 4
      13 2018-03-01 00:00:13 +0000 50.100 5.000000 9 4
      14 2018-03-01 00:00:14 +0000 50.102 5.000000 10 4
      15 2018-03-01 00:00:15 +0000 50.105 5.000000 11 4
      16 2018-03-01 00:00:16 +0000 50.102 5.000000 12 4
      17 2018-03-01 00:00:17 +0000 50.102 5.000000 13 4


      Please notice that when a A increases B keeps its value, and the other way around. They do not reset. Any idea about that?



      Thank you in advance!










      share|improve this question













      I have a dataframe as follows:



                            dtm        f           C      A   B
      0 2018-03-01 00:00:00 +0000 50.135 9.000000 0 0
      1 2018-03-01 00:00:01 +0000 50.130 9.000000 0 0
      2 2018-03-01 00:00:02 +0000 50.120 9.000000 0 0
      3 2018-03-01 00:00:03 +0000 50.112 9.000000 0 0
      4 2018-03-01 00:00:04 +0000 50.102 9.000000 0 0
      5 2018-03-01 00:00:05 +0000 50.097 9.000000 0 0
      6 2018-03-01 00:00:06 +0000 11.095 9.000000 0 0
      7 2018-03-01 00:00:07 +0000 11.095 9.000000 0 0
      8 2018-03-01 00:00:08 +0000 11.092 9.000000 0 0
      9 2018-03-01 00:00:09 +0000 11.095 9.000000 0 0
      10 2018-03-01 00:00:10 +0000 11.097 5.000000 0 0
      11 2018-03-01 00:00:11 +0000 11.097 5.000000 0 0
      12 2018-03-01 00:00:12 +0000 11.097 5.000000 0 0
      13 2018-03-01 00:00:13 +0000 50.100 5.000000 0 0
      14 2018-03-01 00:00:14 +0000 50.102 5.000000 0 0
      15 2018-03-01 00:00:15 +0000 50.105 5.000000 0 0
      16 2018-03-01 00:00:16 +0000 50.102 5.000000 0 0
      17 2018-03-01 00:00:17 +0000 50.102 5.000000 0 0


      A and B are two Counters that work like this:




      • if((f>=50) or (f<50 & C<8)) then A increase by 1


      • if f<50 and C>8 then B increase by 1



      the expected outcome should be like:



                            dtm           f         C     A   B
      0 2018-03-01 00:00:00 +0000 50.135 9.000000 0 0
      1 2018-03-01 00:00:01 +0000 50.130 9.000000 1 0
      2 2018-03-01 00:00:02 +0000 50.120 9.000000 2 0
      3 2018-03-01 00:00:03 +0000 50.112 9.000000 3 0
      4 2018-03-01 00:00:04 +0000 50.102 9.000000 4 0
      5 2018-03-01 00:00:05 +0000 50.097 9.000000 5 0
      6 2018-03-01 00:00:06 +0000 11.095 9.000000 5 1
      7 2018-03-01 00:00:07 +0000 11.095 9.000000 5 2
      8 2018-03-01 00:00:08 +0000 11.092 9.000000 5 3
      9 2018-03-01 00:00:09 +0000 11.095 9.000000 5 4
      10 2018-03-01 00:00:10 +0000 11.097 5.000000 6 4
      11 2018-03-01 00:00:11 +0000 11.097 5.000000 7 4
      12 2018-03-01 00:00:12 +0000 11.097 5.000000 8 4
      13 2018-03-01 00:00:13 +0000 50.100 5.000000 9 4
      14 2018-03-01 00:00:14 +0000 50.102 5.000000 10 4
      15 2018-03-01 00:00:15 +0000 50.105 5.000000 11 4
      16 2018-03-01 00:00:16 +0000 50.102 5.000000 12 4
      17 2018-03-01 00:00:17 +0000 50.102 5.000000 13 4


      Please notice that when a A increases B keeps its value, and the other way around. They do not reset. Any idea about that?



      Thank you in advance!







      python pandas






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 20 at 15:00









      Luca91

      1738




      1738
























          2 Answers
          2






          active

          oldest

          votes

















          up vote
          5
          down vote



          accepted










          For me working nice subtracting 1 with sub and for removing possible -1 in first rows add clip_lower:



          m1 = (df.f >=50) | ((df.f<50) & (df.C<8))
          m2 = (df.f<50) & (df.C>8)

          df['A'] = m1.cumsum().sub(1).clip_lower(0)
          df['B'] = m2.cumsum().sub(1).clip_lower(0)





          share|improve this answer



















          • 3




            @Lucas91 boolean series with cumsum is the trick.
            – Scott Boston
            Nov 20 at 15:07












          • @jezrael, exccellent answer, may I know why there is a change in your output, and the expected output in question. there is no '4' in your df['B']
            – pyd
            Nov 20 at 16:21




















          up vote
          5
          down vote













          Assumptions





          • df.C > 8 was meant to be df.C >= 8 because that would be the compliment to df.C < 8


          • (df.f < 50) & (df.C < 8) isn't necessary because of the or statement and df.f >= 50 on the other side of it.

          • Column 'A' starting with 0 seems to be a weird thing that needs special handling. It would be cleaner to assume that it begins with zero and starts incrementing at the first True




          In line with assign



          a = df.f.values >= 50
          b = df.C.values < 8
          c = a | b

          df.assign(A=c.cumsum(), B=(~c).cumsum())

          dtm f C A B
          0 2018-03-01 00:00:00 +0000 50.135 9.0 1 0
          1 2018-03-01 00:00:01 +0000 50.130 9.0 2 0
          2 2018-03-01 00:00:02 +0000 50.120 9.0 3 0
          3 2018-03-01 00:00:03 +0000 50.112 9.0 4 0
          4 2018-03-01 00:00:04 +0000 50.102 9.0 5 0
          5 2018-03-01 00:00:05 +0000 50.097 9.0 6 0
          6 2018-03-01 00:00:06 +0000 11.095 9.0 6 1
          7 2018-03-01 00:00:07 +0000 11.095 9.0 6 2
          8 2018-03-01 00:00:08 +0000 11.092 9.0 6 3
          9 2018-03-01 00:00:09 +0000 11.095 9.0 6 4
          10 2018-03-01 00:00:10 +0000 11.097 5.0 7 4
          11 2018-03-01 00:00:11 +0000 11.097 5.0 8 4
          12 2018-03-01 00:00:12 +0000 11.097 5.0 9 4
          13 2018-03-01 00:00:13 +0000 50.100 5.0 10 4
          14 2018-03-01 00:00:14 +0000 50.102 5.0 11 4
          15 2018-03-01 00:00:15 +0000 50.105 5.0 12 4
          16 2018-03-01 00:00:16 +0000 50.102 5.0 13 4
          17 2018-03-01 00:00:17 +0000 50.102 5.0 14 4




          In place



          a = df.f.values >= 50
          b = df.C.values < 8
          c = a | b

          df[['A', 'B']] = np.column_stack([c, ~c]).cumsum(0)
          df




          Reduced



          c = (df.f.values >= 50) | (df.C.values < 8)

          df.assign(A=c.cumsum(), B=(~c).cumsum())




          With special handling



          a = df.f.values >= 50
          b = df.C.values < 8
          c0 = a | b
          c1 = ~c0

          c0[0] = False
          c1[0] = False

          df.assign(A=c0.cumsum(), B=c1.cumsum())

          dtm f C A B
          0 2018-03-01 00:00:00 +0000 50.135 9.0 0 0
          1 2018-03-01 00:00:01 +0000 50.130 9.0 1 0
          2 2018-03-01 00:00:02 +0000 50.120 9.0 2 0
          3 2018-03-01 00:00:03 +0000 50.112 9.0 3 0
          4 2018-03-01 00:00:04 +0000 50.102 9.0 4 0
          5 2018-03-01 00:00:05 +0000 50.097 9.0 5 0
          6 2018-03-01 00:00:06 +0000 11.095 9.0 5 1
          7 2018-03-01 00:00:07 +0000 11.095 9.0 5 2
          8 2018-03-01 00:00:08 +0000 11.092 9.0 5 3
          9 2018-03-01 00:00:09 +0000 11.095 9.0 5 4
          10 2018-03-01 00:00:10 +0000 11.097 5.0 6 4
          11 2018-03-01 00:00:11 +0000 11.097 5.0 7 4
          12 2018-03-01 00:00:12 +0000 11.097 5.0 8 4
          13 2018-03-01 00:00:13 +0000 50.100 5.0 9 4
          14 2018-03-01 00:00:14 +0000 50.102 5.0 10 4
          15 2018-03-01 00:00:15 +0000 50.105 5.0 11 4
          16 2018-03-01 00:00:16 +0000 50.102 5.0 12 4
          17 2018-03-01 00:00:17 +0000 50.102 5.0 13 4





          share|improve this answer























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53395791%2fpandas-conditional-counting-when-multiple-conditions-are-met%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            5
            down vote



            accepted










            For me working nice subtracting 1 with sub and for removing possible -1 in first rows add clip_lower:



            m1 = (df.f >=50) | ((df.f<50) & (df.C<8))
            m2 = (df.f<50) & (df.C>8)

            df['A'] = m1.cumsum().sub(1).clip_lower(0)
            df['B'] = m2.cumsum().sub(1).clip_lower(0)





            share|improve this answer



















            • 3




              @Lucas91 boolean series with cumsum is the trick.
              – Scott Boston
              Nov 20 at 15:07












            • @jezrael, exccellent answer, may I know why there is a change in your output, and the expected output in question. there is no '4' in your df['B']
              – pyd
              Nov 20 at 16:21

















            up vote
            5
            down vote



            accepted










            For me working nice subtracting 1 with sub and for removing possible -1 in first rows add clip_lower:



            m1 = (df.f >=50) | ((df.f<50) & (df.C<8))
            m2 = (df.f<50) & (df.C>8)

            df['A'] = m1.cumsum().sub(1).clip_lower(0)
            df['B'] = m2.cumsum().sub(1).clip_lower(0)





            share|improve this answer



















            • 3




              @Lucas91 boolean series with cumsum is the trick.
              – Scott Boston
              Nov 20 at 15:07












            • @jezrael, exccellent answer, may I know why there is a change in your output, and the expected output in question. there is no '4' in your df['B']
              – pyd
              Nov 20 at 16:21















            up vote
            5
            down vote



            accepted







            up vote
            5
            down vote



            accepted






            For me working nice subtracting 1 with sub and for removing possible -1 in first rows add clip_lower:



            m1 = (df.f >=50) | ((df.f<50) & (df.C<8))
            m2 = (df.f<50) & (df.C>8)

            df['A'] = m1.cumsum().sub(1).clip_lower(0)
            df['B'] = m2.cumsum().sub(1).clip_lower(0)





            share|improve this answer














            For me working nice subtracting 1 with sub and for removing possible -1 in first rows add clip_lower:



            m1 = (df.f >=50) | ((df.f<50) & (df.C<8))
            m2 = (df.f<50) & (df.C>8)

            df['A'] = m1.cumsum().sub(1).clip_lower(0)
            df['B'] = m2.cumsum().sub(1).clip_lower(0)






            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited Nov 20 at 15:11

























            answered Nov 20 at 15:04









            jezrael

            316k22256333




            316k22256333








            • 3




              @Lucas91 boolean series with cumsum is the trick.
              – Scott Boston
              Nov 20 at 15:07












            • @jezrael, exccellent answer, may I know why there is a change in your output, and the expected output in question. there is no '4' in your df['B']
              – pyd
              Nov 20 at 16:21
















            • 3




              @Lucas91 boolean series with cumsum is the trick.
              – Scott Boston
              Nov 20 at 15:07












            • @jezrael, exccellent answer, may I know why there is a change in your output, and the expected output in question. there is no '4' in your df['B']
              – pyd
              Nov 20 at 16:21










            3




            3




            @Lucas91 boolean series with cumsum is the trick.
            – Scott Boston
            Nov 20 at 15:07






            @Lucas91 boolean series with cumsum is the trick.
            – Scott Boston
            Nov 20 at 15:07














            @jezrael, exccellent answer, may I know why there is a change in your output, and the expected output in question. there is no '4' in your df['B']
            – pyd
            Nov 20 at 16:21






            @jezrael, exccellent answer, may I know why there is a change in your output, and the expected output in question. there is no '4' in your df['B']
            – pyd
            Nov 20 at 16:21














            up vote
            5
            down vote













            Assumptions





            • df.C > 8 was meant to be df.C >= 8 because that would be the compliment to df.C < 8


            • (df.f < 50) & (df.C < 8) isn't necessary because of the or statement and df.f >= 50 on the other side of it.

            • Column 'A' starting with 0 seems to be a weird thing that needs special handling. It would be cleaner to assume that it begins with zero and starts incrementing at the first True




            In line with assign



            a = df.f.values >= 50
            b = df.C.values < 8
            c = a | b

            df.assign(A=c.cumsum(), B=(~c).cumsum())

            dtm f C A B
            0 2018-03-01 00:00:00 +0000 50.135 9.0 1 0
            1 2018-03-01 00:00:01 +0000 50.130 9.0 2 0
            2 2018-03-01 00:00:02 +0000 50.120 9.0 3 0
            3 2018-03-01 00:00:03 +0000 50.112 9.0 4 0
            4 2018-03-01 00:00:04 +0000 50.102 9.0 5 0
            5 2018-03-01 00:00:05 +0000 50.097 9.0 6 0
            6 2018-03-01 00:00:06 +0000 11.095 9.0 6 1
            7 2018-03-01 00:00:07 +0000 11.095 9.0 6 2
            8 2018-03-01 00:00:08 +0000 11.092 9.0 6 3
            9 2018-03-01 00:00:09 +0000 11.095 9.0 6 4
            10 2018-03-01 00:00:10 +0000 11.097 5.0 7 4
            11 2018-03-01 00:00:11 +0000 11.097 5.0 8 4
            12 2018-03-01 00:00:12 +0000 11.097 5.0 9 4
            13 2018-03-01 00:00:13 +0000 50.100 5.0 10 4
            14 2018-03-01 00:00:14 +0000 50.102 5.0 11 4
            15 2018-03-01 00:00:15 +0000 50.105 5.0 12 4
            16 2018-03-01 00:00:16 +0000 50.102 5.0 13 4
            17 2018-03-01 00:00:17 +0000 50.102 5.0 14 4




            In place



            a = df.f.values >= 50
            b = df.C.values < 8
            c = a | b

            df[['A', 'B']] = np.column_stack([c, ~c]).cumsum(0)
            df




            Reduced



            c = (df.f.values >= 50) | (df.C.values < 8)

            df.assign(A=c.cumsum(), B=(~c).cumsum())




            With special handling



            a = df.f.values >= 50
            b = df.C.values < 8
            c0 = a | b
            c1 = ~c0

            c0[0] = False
            c1[0] = False

            df.assign(A=c0.cumsum(), B=c1.cumsum())

            dtm f C A B
            0 2018-03-01 00:00:00 +0000 50.135 9.0 0 0
            1 2018-03-01 00:00:01 +0000 50.130 9.0 1 0
            2 2018-03-01 00:00:02 +0000 50.120 9.0 2 0
            3 2018-03-01 00:00:03 +0000 50.112 9.0 3 0
            4 2018-03-01 00:00:04 +0000 50.102 9.0 4 0
            5 2018-03-01 00:00:05 +0000 50.097 9.0 5 0
            6 2018-03-01 00:00:06 +0000 11.095 9.0 5 1
            7 2018-03-01 00:00:07 +0000 11.095 9.0 5 2
            8 2018-03-01 00:00:08 +0000 11.092 9.0 5 3
            9 2018-03-01 00:00:09 +0000 11.095 9.0 5 4
            10 2018-03-01 00:00:10 +0000 11.097 5.0 6 4
            11 2018-03-01 00:00:11 +0000 11.097 5.0 7 4
            12 2018-03-01 00:00:12 +0000 11.097 5.0 8 4
            13 2018-03-01 00:00:13 +0000 50.100 5.0 9 4
            14 2018-03-01 00:00:14 +0000 50.102 5.0 10 4
            15 2018-03-01 00:00:15 +0000 50.105 5.0 11 4
            16 2018-03-01 00:00:16 +0000 50.102 5.0 12 4
            17 2018-03-01 00:00:17 +0000 50.102 5.0 13 4





            share|improve this answer



























              up vote
              5
              down vote













              Assumptions





              • df.C > 8 was meant to be df.C >= 8 because that would be the compliment to df.C < 8


              • (df.f < 50) & (df.C < 8) isn't necessary because of the or statement and df.f >= 50 on the other side of it.

              • Column 'A' starting with 0 seems to be a weird thing that needs special handling. It would be cleaner to assume that it begins with zero and starts incrementing at the first True




              In line with assign



              a = df.f.values >= 50
              b = df.C.values < 8
              c = a | b

              df.assign(A=c.cumsum(), B=(~c).cumsum())

              dtm f C A B
              0 2018-03-01 00:00:00 +0000 50.135 9.0 1 0
              1 2018-03-01 00:00:01 +0000 50.130 9.0 2 0
              2 2018-03-01 00:00:02 +0000 50.120 9.0 3 0
              3 2018-03-01 00:00:03 +0000 50.112 9.0 4 0
              4 2018-03-01 00:00:04 +0000 50.102 9.0 5 0
              5 2018-03-01 00:00:05 +0000 50.097 9.0 6 0
              6 2018-03-01 00:00:06 +0000 11.095 9.0 6 1
              7 2018-03-01 00:00:07 +0000 11.095 9.0 6 2
              8 2018-03-01 00:00:08 +0000 11.092 9.0 6 3
              9 2018-03-01 00:00:09 +0000 11.095 9.0 6 4
              10 2018-03-01 00:00:10 +0000 11.097 5.0 7 4
              11 2018-03-01 00:00:11 +0000 11.097 5.0 8 4
              12 2018-03-01 00:00:12 +0000 11.097 5.0 9 4
              13 2018-03-01 00:00:13 +0000 50.100 5.0 10 4
              14 2018-03-01 00:00:14 +0000 50.102 5.0 11 4
              15 2018-03-01 00:00:15 +0000 50.105 5.0 12 4
              16 2018-03-01 00:00:16 +0000 50.102 5.0 13 4
              17 2018-03-01 00:00:17 +0000 50.102 5.0 14 4




              In place



              a = df.f.values >= 50
              b = df.C.values < 8
              c = a | b

              df[['A', 'B']] = np.column_stack([c, ~c]).cumsum(0)
              df




              Reduced



              c = (df.f.values >= 50) | (df.C.values < 8)

              df.assign(A=c.cumsum(), B=(~c).cumsum())




              With special handling



              a = df.f.values >= 50
              b = df.C.values < 8
              c0 = a | b
              c1 = ~c0

              c0[0] = False
              c1[0] = False

              df.assign(A=c0.cumsum(), B=c1.cumsum())

              dtm f C A B
              0 2018-03-01 00:00:00 +0000 50.135 9.0 0 0
              1 2018-03-01 00:00:01 +0000 50.130 9.0 1 0
              2 2018-03-01 00:00:02 +0000 50.120 9.0 2 0
              3 2018-03-01 00:00:03 +0000 50.112 9.0 3 0
              4 2018-03-01 00:00:04 +0000 50.102 9.0 4 0
              5 2018-03-01 00:00:05 +0000 50.097 9.0 5 0
              6 2018-03-01 00:00:06 +0000 11.095 9.0 5 1
              7 2018-03-01 00:00:07 +0000 11.095 9.0 5 2
              8 2018-03-01 00:00:08 +0000 11.092 9.0 5 3
              9 2018-03-01 00:00:09 +0000 11.095 9.0 5 4
              10 2018-03-01 00:00:10 +0000 11.097 5.0 6 4
              11 2018-03-01 00:00:11 +0000 11.097 5.0 7 4
              12 2018-03-01 00:00:12 +0000 11.097 5.0 8 4
              13 2018-03-01 00:00:13 +0000 50.100 5.0 9 4
              14 2018-03-01 00:00:14 +0000 50.102 5.0 10 4
              15 2018-03-01 00:00:15 +0000 50.105 5.0 11 4
              16 2018-03-01 00:00:16 +0000 50.102 5.0 12 4
              17 2018-03-01 00:00:17 +0000 50.102 5.0 13 4





              share|improve this answer

























                up vote
                5
                down vote










                up vote
                5
                down vote









                Assumptions





                • df.C > 8 was meant to be df.C >= 8 because that would be the compliment to df.C < 8


                • (df.f < 50) & (df.C < 8) isn't necessary because of the or statement and df.f >= 50 on the other side of it.

                • Column 'A' starting with 0 seems to be a weird thing that needs special handling. It would be cleaner to assume that it begins with zero and starts incrementing at the first True




                In line with assign



                a = df.f.values >= 50
                b = df.C.values < 8
                c = a | b

                df.assign(A=c.cumsum(), B=(~c).cumsum())

                dtm f C A B
                0 2018-03-01 00:00:00 +0000 50.135 9.0 1 0
                1 2018-03-01 00:00:01 +0000 50.130 9.0 2 0
                2 2018-03-01 00:00:02 +0000 50.120 9.0 3 0
                3 2018-03-01 00:00:03 +0000 50.112 9.0 4 0
                4 2018-03-01 00:00:04 +0000 50.102 9.0 5 0
                5 2018-03-01 00:00:05 +0000 50.097 9.0 6 0
                6 2018-03-01 00:00:06 +0000 11.095 9.0 6 1
                7 2018-03-01 00:00:07 +0000 11.095 9.0 6 2
                8 2018-03-01 00:00:08 +0000 11.092 9.0 6 3
                9 2018-03-01 00:00:09 +0000 11.095 9.0 6 4
                10 2018-03-01 00:00:10 +0000 11.097 5.0 7 4
                11 2018-03-01 00:00:11 +0000 11.097 5.0 8 4
                12 2018-03-01 00:00:12 +0000 11.097 5.0 9 4
                13 2018-03-01 00:00:13 +0000 50.100 5.0 10 4
                14 2018-03-01 00:00:14 +0000 50.102 5.0 11 4
                15 2018-03-01 00:00:15 +0000 50.105 5.0 12 4
                16 2018-03-01 00:00:16 +0000 50.102 5.0 13 4
                17 2018-03-01 00:00:17 +0000 50.102 5.0 14 4




                In place



                a = df.f.values >= 50
                b = df.C.values < 8
                c = a | b

                df[['A', 'B']] = np.column_stack([c, ~c]).cumsum(0)
                df




                Reduced



                c = (df.f.values >= 50) | (df.C.values < 8)

                df.assign(A=c.cumsum(), B=(~c).cumsum())




                With special handling



                a = df.f.values >= 50
                b = df.C.values < 8
                c0 = a | b
                c1 = ~c0

                c0[0] = False
                c1[0] = False

                df.assign(A=c0.cumsum(), B=c1.cumsum())

                dtm f C A B
                0 2018-03-01 00:00:00 +0000 50.135 9.0 0 0
                1 2018-03-01 00:00:01 +0000 50.130 9.0 1 0
                2 2018-03-01 00:00:02 +0000 50.120 9.0 2 0
                3 2018-03-01 00:00:03 +0000 50.112 9.0 3 0
                4 2018-03-01 00:00:04 +0000 50.102 9.0 4 0
                5 2018-03-01 00:00:05 +0000 50.097 9.0 5 0
                6 2018-03-01 00:00:06 +0000 11.095 9.0 5 1
                7 2018-03-01 00:00:07 +0000 11.095 9.0 5 2
                8 2018-03-01 00:00:08 +0000 11.092 9.0 5 3
                9 2018-03-01 00:00:09 +0000 11.095 9.0 5 4
                10 2018-03-01 00:00:10 +0000 11.097 5.0 6 4
                11 2018-03-01 00:00:11 +0000 11.097 5.0 7 4
                12 2018-03-01 00:00:12 +0000 11.097 5.0 8 4
                13 2018-03-01 00:00:13 +0000 50.100 5.0 9 4
                14 2018-03-01 00:00:14 +0000 50.102 5.0 10 4
                15 2018-03-01 00:00:15 +0000 50.105 5.0 11 4
                16 2018-03-01 00:00:16 +0000 50.102 5.0 12 4
                17 2018-03-01 00:00:17 +0000 50.102 5.0 13 4





                share|improve this answer














                Assumptions





                • df.C > 8 was meant to be df.C >= 8 because that would be the compliment to df.C < 8


                • (df.f < 50) & (df.C < 8) isn't necessary because of the or statement and df.f >= 50 on the other side of it.

                • Column 'A' starting with 0 seems to be a weird thing that needs special handling. It would be cleaner to assume that it begins with zero and starts incrementing at the first True




                In line with assign



                a = df.f.values >= 50
                b = df.C.values < 8
                c = a | b

                df.assign(A=c.cumsum(), B=(~c).cumsum())

                dtm f C A B
                0 2018-03-01 00:00:00 +0000 50.135 9.0 1 0
                1 2018-03-01 00:00:01 +0000 50.130 9.0 2 0
                2 2018-03-01 00:00:02 +0000 50.120 9.0 3 0
                3 2018-03-01 00:00:03 +0000 50.112 9.0 4 0
                4 2018-03-01 00:00:04 +0000 50.102 9.0 5 0
                5 2018-03-01 00:00:05 +0000 50.097 9.0 6 0
                6 2018-03-01 00:00:06 +0000 11.095 9.0 6 1
                7 2018-03-01 00:00:07 +0000 11.095 9.0 6 2
                8 2018-03-01 00:00:08 +0000 11.092 9.0 6 3
                9 2018-03-01 00:00:09 +0000 11.095 9.0 6 4
                10 2018-03-01 00:00:10 +0000 11.097 5.0 7 4
                11 2018-03-01 00:00:11 +0000 11.097 5.0 8 4
                12 2018-03-01 00:00:12 +0000 11.097 5.0 9 4
                13 2018-03-01 00:00:13 +0000 50.100 5.0 10 4
                14 2018-03-01 00:00:14 +0000 50.102 5.0 11 4
                15 2018-03-01 00:00:15 +0000 50.105 5.0 12 4
                16 2018-03-01 00:00:16 +0000 50.102 5.0 13 4
                17 2018-03-01 00:00:17 +0000 50.102 5.0 14 4




                In place



                a = df.f.values >= 50
                b = df.C.values < 8
                c = a | b

                df[['A', 'B']] = np.column_stack([c, ~c]).cumsum(0)
                df




                Reduced



                c = (df.f.values >= 50) | (df.C.values < 8)

                df.assign(A=c.cumsum(), B=(~c).cumsum())




                With special handling



                a = df.f.values >= 50
                b = df.C.values < 8
                c0 = a | b
                c1 = ~c0

                c0[0] = False
                c1[0] = False

                df.assign(A=c0.cumsum(), B=c1.cumsum())

                dtm f C A B
                0 2018-03-01 00:00:00 +0000 50.135 9.0 0 0
                1 2018-03-01 00:00:01 +0000 50.130 9.0 1 0
                2 2018-03-01 00:00:02 +0000 50.120 9.0 2 0
                3 2018-03-01 00:00:03 +0000 50.112 9.0 3 0
                4 2018-03-01 00:00:04 +0000 50.102 9.0 4 0
                5 2018-03-01 00:00:05 +0000 50.097 9.0 5 0
                6 2018-03-01 00:00:06 +0000 11.095 9.0 5 1
                7 2018-03-01 00:00:07 +0000 11.095 9.0 5 2
                8 2018-03-01 00:00:08 +0000 11.092 9.0 5 3
                9 2018-03-01 00:00:09 +0000 11.095 9.0 5 4
                10 2018-03-01 00:00:10 +0000 11.097 5.0 6 4
                11 2018-03-01 00:00:11 +0000 11.097 5.0 7 4
                12 2018-03-01 00:00:12 +0000 11.097 5.0 8 4
                13 2018-03-01 00:00:13 +0000 50.100 5.0 9 4
                14 2018-03-01 00:00:14 +0000 50.102 5.0 10 4
                15 2018-03-01 00:00:15 +0000 50.105 5.0 11 4
                16 2018-03-01 00:00:16 +0000 50.102 5.0 12 4
                17 2018-03-01 00:00:17 +0000 50.102 5.0 13 4






                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Nov 20 at 15:56

























                answered Nov 20 at 15:30









                piRSquared

                151k22140282




                151k22140282






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53395791%2fpandas-conditional-counting-when-multiple-conditions-are-met%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    404 Error Contact Form 7 ajax form submitting

                    How to know if a Active Directory user can login interactively

                    TypeError: fit_transform() missing 1 required positional argument: 'X'