Karatsuba multiplication
$begingroup$
My implementation of Karatsuba multiplication from Tim Roughgarden's Algorithms course. I've made a Integer class that holds an integer in string format. I've added operations to this class to add, subtract and multiply numbers. Karatsuba.cpp perform's the Gauss trick.
Integer.hpp
#pragma once
#include <string>
#include <functional>
class Integer{
public:
Integer();
Integer(const std::string& input);
~Integer();
Integer operator+(const Integer& other) const;
Integer operator-(const Integer& other) const;
Integer operator*(const Integer& other) const;
size_t size() const{return fString.size();}
void padRight(size_t num);
void padLeft(size_t num);
Integer substr(size_t pos, size_t length) const;
void print() const;
void stripLeadingZeros();
private:
std::string fString;
};
void equalizeLengthsPadLeft(Integer& first,
Integer& second);
void equalizeLengthsPadRight(std::string& first, std::string& second);
Integer.cpp
#include "Integer.hpp"
#include <assert.h>
#include <string>
#include <algorithm>
#include <iostream>
namespace {
int char2int(char c){
return c - '0';
}
}
Integer::Integer()
:
fString()
{
}
Integer::Integer(const std::string& input)
:
fString(input)
{
}
Integer::~Integer(){}
Integer Integer::substr(size_t pos, size_t len) const{
return fString.substr(pos, len);
}
void equalizeLengthsPadLeft(Integer& first,
Integer& second){
if (first.size() < second.size()){
first.padLeft(second.size()-first.size());
}
else if(first.size() > second.size()){
second.padLeft(first.size() - second.size());
}
}
void equalizeLengthsPadRight(std::string& first, std::string& second){
if (first.size() < second.size()){
first += std::string(second.size()-first.size(), '0');
}
else if(first.size() > second.size()){
second += std::string(first.size() - second.size(), '0');
}
}
Integer Integer::operator+(const Integer& other) const{
// For the time being, just conver to integer and return
std::string first = fString;
std::reverse(first.begin(), first.end());
std::string second = other.fString;
std::reverse(second.begin(), second.end());
equalizeLengthsPadRight(first,second);
std::string::iterator first_it = first.begin();
std::string::iterator second_it = second.begin();
std::string resultStr;
int carry = 0;
while(first_it != first.end()){
int sum = char2int(*first_it) + char2int(*second_it) + carry;
carry = 0;
if (sum >= 10){
sum = sum%10;
carry = 1;
}
resultStr += std::to_string(sum);
first_it++;second_it++;
}
if (carry){
resultStr += '1';
}
std::reverse(resultStr.begin(), resultStr.end());
return resultStr;
}
Integer Integer::operator-(const Integer& other) const{
std::string first = fString;
std::reverse(first.begin(), first.end());
std::string second = other.fString;
std::reverse(second.begin(), second.end());
// Equalize
equalizeLengthsPadRight(first,second);
std::string::iterator first_it = first.begin();
std::string::iterator second_it = second.begin();
std::string resultStr;
while(first_it != first.end()){
int up = char2int(*first_it);
int down = char2int(*second_it);
int localResult;
if (up >= down){
localResult = up-down;
}
else{
// Keep searching forward until you get a non-zero value
auto next_it = first_it+1;
while(true){
if (char2int(*next_it) > 0){
// Found the first non-zero number
break;
}
next_it++;
}
*next_it = std::to_string(char2int(*next_it)-1)[0];
// Now chase back to first_it setting 9's
// on the way. Make sure everything was 0
// beforehand
next_it--;
while(next_it != first_it){
assert(char2int(*next_it) == 0);
*next_it = std::to_string(9)[0];
next_it--;
}
localResult = up+10 -down;
}
assert(localResult>=0);
resultStr += std::to_string(localResult);
first_it++;
second_it++;
}
std::reverse(resultStr.begin(), resultStr.end());
return resultStr;
}
Integer Integer::operator*(const Integer& other) const {
// Only allow multiplication when size is 1
assert(size() == other.size() == 1);
return std::to_string(std::stoi(fString)*std::stoi(other.fString));
}
void Integer::padRight(size_t num){
fString += std::string(num, '0');
}
void Integer::padLeft(size_t num){
fString.insert(0,num,'0');
}
void Integer::print() const{
std::cout << fString << std::endl;
}
void Integer::stripLeadingZeros(){
// Don't strip if all are zeros - this will lead to an empty string
if (std::all_of(fString.cbegin(), fString.cend(), (char c){return ('0'== c); })){
return;
}
fString.erase(0, fString.find_first_not_of('0'));
}
Karatsuba multiplication
#include <string>
#include <assert.h>
#include <cmath>
#include "Integer.hpp"
Integer multiply(const Integer& inp1, const Integer& inp2){
Integer first = inp1;
Integer second = inp2;
equalizeLengthsPadLeft(first, second);
assert(first.size()==second.size());
size_t sz = first.size();
// Base case
if (sz == 1){
return first*second;
}
int n = sz/2;
Integer A = first.substr(0,n);
Integer B = first.substr(n, sz-n);
Integer C = second.substr(0,n);
Integer D = second.substr(n, sz-n);
Integer AC = multiply(A, C);
Integer BD = multiply(B, D);
Integer A_plus_B = A+B;
Integer C_plus_D = C+D;
Integer sum = multiply(A_plus_B, C_plus_D);
Integer AD_plus_BC = sum - AC - BD;
AC.padRight(2*(sz-n));
AD_plus_BC.padRight(sz-n);
Integer result = AC+ AD_plus_BC + BD;
result.stripLeadingZeros();
return result;
}
int main(){
Integer first("3141592653589793238462643383279502884197169399375105820974944592");
Integer second("2718281828459045235360287471352662497757247093699959574966967627");
Integer ans = multiply(first, second);
ans.print();
}
c++ algorithm
$endgroup$
add a comment |
$begingroup$
My implementation of Karatsuba multiplication from Tim Roughgarden's Algorithms course. I've made a Integer class that holds an integer in string format. I've added operations to this class to add, subtract and multiply numbers. Karatsuba.cpp perform's the Gauss trick.
Integer.hpp
#pragma once
#include <string>
#include <functional>
class Integer{
public:
Integer();
Integer(const std::string& input);
~Integer();
Integer operator+(const Integer& other) const;
Integer operator-(const Integer& other) const;
Integer operator*(const Integer& other) const;
size_t size() const{return fString.size();}
void padRight(size_t num);
void padLeft(size_t num);
Integer substr(size_t pos, size_t length) const;
void print() const;
void stripLeadingZeros();
private:
std::string fString;
};
void equalizeLengthsPadLeft(Integer& first,
Integer& second);
void equalizeLengthsPadRight(std::string& first, std::string& second);
Integer.cpp
#include "Integer.hpp"
#include <assert.h>
#include <string>
#include <algorithm>
#include <iostream>
namespace {
int char2int(char c){
return c - '0';
}
}
Integer::Integer()
:
fString()
{
}
Integer::Integer(const std::string& input)
:
fString(input)
{
}
Integer::~Integer(){}
Integer Integer::substr(size_t pos, size_t len) const{
return fString.substr(pos, len);
}
void equalizeLengthsPadLeft(Integer& first,
Integer& second){
if (first.size() < second.size()){
first.padLeft(second.size()-first.size());
}
else if(first.size() > second.size()){
second.padLeft(first.size() - second.size());
}
}
void equalizeLengthsPadRight(std::string& first, std::string& second){
if (first.size() < second.size()){
first += std::string(second.size()-first.size(), '0');
}
else if(first.size() > second.size()){
second += std::string(first.size() - second.size(), '0');
}
}
Integer Integer::operator+(const Integer& other) const{
// For the time being, just conver to integer and return
std::string first = fString;
std::reverse(first.begin(), first.end());
std::string second = other.fString;
std::reverse(second.begin(), second.end());
equalizeLengthsPadRight(first,second);
std::string::iterator first_it = first.begin();
std::string::iterator second_it = second.begin();
std::string resultStr;
int carry = 0;
while(first_it != first.end()){
int sum = char2int(*first_it) + char2int(*second_it) + carry;
carry = 0;
if (sum >= 10){
sum = sum%10;
carry = 1;
}
resultStr += std::to_string(sum);
first_it++;second_it++;
}
if (carry){
resultStr += '1';
}
std::reverse(resultStr.begin(), resultStr.end());
return resultStr;
}
Integer Integer::operator-(const Integer& other) const{
std::string first = fString;
std::reverse(first.begin(), first.end());
std::string second = other.fString;
std::reverse(second.begin(), second.end());
// Equalize
equalizeLengthsPadRight(first,second);
std::string::iterator first_it = first.begin();
std::string::iterator second_it = second.begin();
std::string resultStr;
while(first_it != first.end()){
int up = char2int(*first_it);
int down = char2int(*second_it);
int localResult;
if (up >= down){
localResult = up-down;
}
else{
// Keep searching forward until you get a non-zero value
auto next_it = first_it+1;
while(true){
if (char2int(*next_it) > 0){
// Found the first non-zero number
break;
}
next_it++;
}
*next_it = std::to_string(char2int(*next_it)-1)[0];
// Now chase back to first_it setting 9's
// on the way. Make sure everything was 0
// beforehand
next_it--;
while(next_it != first_it){
assert(char2int(*next_it) == 0);
*next_it = std::to_string(9)[0];
next_it--;
}
localResult = up+10 -down;
}
assert(localResult>=0);
resultStr += std::to_string(localResult);
first_it++;
second_it++;
}
std::reverse(resultStr.begin(), resultStr.end());
return resultStr;
}
Integer Integer::operator*(const Integer& other) const {
// Only allow multiplication when size is 1
assert(size() == other.size() == 1);
return std::to_string(std::stoi(fString)*std::stoi(other.fString));
}
void Integer::padRight(size_t num){
fString += std::string(num, '0');
}
void Integer::padLeft(size_t num){
fString.insert(0,num,'0');
}
void Integer::print() const{
std::cout << fString << std::endl;
}
void Integer::stripLeadingZeros(){
// Don't strip if all are zeros - this will lead to an empty string
if (std::all_of(fString.cbegin(), fString.cend(), (char c){return ('0'== c); })){
return;
}
fString.erase(0, fString.find_first_not_of('0'));
}
Karatsuba multiplication
#include <string>
#include <assert.h>
#include <cmath>
#include "Integer.hpp"
Integer multiply(const Integer& inp1, const Integer& inp2){
Integer first = inp1;
Integer second = inp2;
equalizeLengthsPadLeft(first, second);
assert(first.size()==second.size());
size_t sz = first.size();
// Base case
if (sz == 1){
return first*second;
}
int n = sz/2;
Integer A = first.substr(0,n);
Integer B = first.substr(n, sz-n);
Integer C = second.substr(0,n);
Integer D = second.substr(n, sz-n);
Integer AC = multiply(A, C);
Integer BD = multiply(B, D);
Integer A_plus_B = A+B;
Integer C_plus_D = C+D;
Integer sum = multiply(A_plus_B, C_plus_D);
Integer AD_plus_BC = sum - AC - BD;
AC.padRight(2*(sz-n));
AD_plus_BC.padRight(sz-n);
Integer result = AC+ AD_plus_BC + BD;
result.stripLeadingZeros();
return result;
}
int main(){
Integer first("3141592653589793238462643383279502884197169399375105820974944592");
Integer second("2718281828459045235360287471352662497757247093699959574966967627");
Integer ans = multiply(first, second);
ans.print();
}
c++ algorithm
$endgroup$
add a comment |
$begingroup$
My implementation of Karatsuba multiplication from Tim Roughgarden's Algorithms course. I've made a Integer class that holds an integer in string format. I've added operations to this class to add, subtract and multiply numbers. Karatsuba.cpp perform's the Gauss trick.
Integer.hpp
#pragma once
#include <string>
#include <functional>
class Integer{
public:
Integer();
Integer(const std::string& input);
~Integer();
Integer operator+(const Integer& other) const;
Integer operator-(const Integer& other) const;
Integer operator*(const Integer& other) const;
size_t size() const{return fString.size();}
void padRight(size_t num);
void padLeft(size_t num);
Integer substr(size_t pos, size_t length) const;
void print() const;
void stripLeadingZeros();
private:
std::string fString;
};
void equalizeLengthsPadLeft(Integer& first,
Integer& second);
void equalizeLengthsPadRight(std::string& first, std::string& second);
Integer.cpp
#include "Integer.hpp"
#include <assert.h>
#include <string>
#include <algorithm>
#include <iostream>
namespace {
int char2int(char c){
return c - '0';
}
}
Integer::Integer()
:
fString()
{
}
Integer::Integer(const std::string& input)
:
fString(input)
{
}
Integer::~Integer(){}
Integer Integer::substr(size_t pos, size_t len) const{
return fString.substr(pos, len);
}
void equalizeLengthsPadLeft(Integer& first,
Integer& second){
if (first.size() < second.size()){
first.padLeft(second.size()-first.size());
}
else if(first.size() > second.size()){
second.padLeft(first.size() - second.size());
}
}
void equalizeLengthsPadRight(std::string& first, std::string& second){
if (first.size() < second.size()){
first += std::string(second.size()-first.size(), '0');
}
else if(first.size() > second.size()){
second += std::string(first.size() - second.size(), '0');
}
}
Integer Integer::operator+(const Integer& other) const{
// For the time being, just conver to integer and return
std::string first = fString;
std::reverse(first.begin(), first.end());
std::string second = other.fString;
std::reverse(second.begin(), second.end());
equalizeLengthsPadRight(first,second);
std::string::iterator first_it = first.begin();
std::string::iterator second_it = second.begin();
std::string resultStr;
int carry = 0;
while(first_it != first.end()){
int sum = char2int(*first_it) + char2int(*second_it) + carry;
carry = 0;
if (sum >= 10){
sum = sum%10;
carry = 1;
}
resultStr += std::to_string(sum);
first_it++;second_it++;
}
if (carry){
resultStr += '1';
}
std::reverse(resultStr.begin(), resultStr.end());
return resultStr;
}
Integer Integer::operator-(const Integer& other) const{
std::string first = fString;
std::reverse(first.begin(), first.end());
std::string second = other.fString;
std::reverse(second.begin(), second.end());
// Equalize
equalizeLengthsPadRight(first,second);
std::string::iterator first_it = first.begin();
std::string::iterator second_it = second.begin();
std::string resultStr;
while(first_it != first.end()){
int up = char2int(*first_it);
int down = char2int(*second_it);
int localResult;
if (up >= down){
localResult = up-down;
}
else{
// Keep searching forward until you get a non-zero value
auto next_it = first_it+1;
while(true){
if (char2int(*next_it) > 0){
// Found the first non-zero number
break;
}
next_it++;
}
*next_it = std::to_string(char2int(*next_it)-1)[0];
// Now chase back to first_it setting 9's
// on the way. Make sure everything was 0
// beforehand
next_it--;
while(next_it != first_it){
assert(char2int(*next_it) == 0);
*next_it = std::to_string(9)[0];
next_it--;
}
localResult = up+10 -down;
}
assert(localResult>=0);
resultStr += std::to_string(localResult);
first_it++;
second_it++;
}
std::reverse(resultStr.begin(), resultStr.end());
return resultStr;
}
Integer Integer::operator*(const Integer& other) const {
// Only allow multiplication when size is 1
assert(size() == other.size() == 1);
return std::to_string(std::stoi(fString)*std::stoi(other.fString));
}
void Integer::padRight(size_t num){
fString += std::string(num, '0');
}
void Integer::padLeft(size_t num){
fString.insert(0,num,'0');
}
void Integer::print() const{
std::cout << fString << std::endl;
}
void Integer::stripLeadingZeros(){
// Don't strip if all are zeros - this will lead to an empty string
if (std::all_of(fString.cbegin(), fString.cend(), (char c){return ('0'== c); })){
return;
}
fString.erase(0, fString.find_first_not_of('0'));
}
Karatsuba multiplication
#include <string>
#include <assert.h>
#include <cmath>
#include "Integer.hpp"
Integer multiply(const Integer& inp1, const Integer& inp2){
Integer first = inp1;
Integer second = inp2;
equalizeLengthsPadLeft(first, second);
assert(first.size()==second.size());
size_t sz = first.size();
// Base case
if (sz == 1){
return first*second;
}
int n = sz/2;
Integer A = first.substr(0,n);
Integer B = first.substr(n, sz-n);
Integer C = second.substr(0,n);
Integer D = second.substr(n, sz-n);
Integer AC = multiply(A, C);
Integer BD = multiply(B, D);
Integer A_plus_B = A+B;
Integer C_plus_D = C+D;
Integer sum = multiply(A_plus_B, C_plus_D);
Integer AD_plus_BC = sum - AC - BD;
AC.padRight(2*(sz-n));
AD_plus_BC.padRight(sz-n);
Integer result = AC+ AD_plus_BC + BD;
result.stripLeadingZeros();
return result;
}
int main(){
Integer first("3141592653589793238462643383279502884197169399375105820974944592");
Integer second("2718281828459045235360287471352662497757247093699959574966967627");
Integer ans = multiply(first, second);
ans.print();
}
c++ algorithm
$endgroup$
My implementation of Karatsuba multiplication from Tim Roughgarden's Algorithms course. I've made a Integer class that holds an integer in string format. I've added operations to this class to add, subtract and multiply numbers. Karatsuba.cpp perform's the Gauss trick.
Integer.hpp
#pragma once
#include <string>
#include <functional>
class Integer{
public:
Integer();
Integer(const std::string& input);
~Integer();
Integer operator+(const Integer& other) const;
Integer operator-(const Integer& other) const;
Integer operator*(const Integer& other) const;
size_t size() const{return fString.size();}
void padRight(size_t num);
void padLeft(size_t num);
Integer substr(size_t pos, size_t length) const;
void print() const;
void stripLeadingZeros();
private:
std::string fString;
};
void equalizeLengthsPadLeft(Integer& first,
Integer& second);
void equalizeLengthsPadRight(std::string& first, std::string& second);
Integer.cpp
#include "Integer.hpp"
#include <assert.h>
#include <string>
#include <algorithm>
#include <iostream>
namespace {
int char2int(char c){
return c - '0';
}
}
Integer::Integer()
:
fString()
{
}
Integer::Integer(const std::string& input)
:
fString(input)
{
}
Integer::~Integer(){}
Integer Integer::substr(size_t pos, size_t len) const{
return fString.substr(pos, len);
}
void equalizeLengthsPadLeft(Integer& first,
Integer& second){
if (first.size() < second.size()){
first.padLeft(second.size()-first.size());
}
else if(first.size() > second.size()){
second.padLeft(first.size() - second.size());
}
}
void equalizeLengthsPadRight(std::string& first, std::string& second){
if (first.size() < second.size()){
first += std::string(second.size()-first.size(), '0');
}
else if(first.size() > second.size()){
second += std::string(first.size() - second.size(), '0');
}
}
Integer Integer::operator+(const Integer& other) const{
// For the time being, just conver to integer and return
std::string first = fString;
std::reverse(first.begin(), first.end());
std::string second = other.fString;
std::reverse(second.begin(), second.end());
equalizeLengthsPadRight(first,second);
std::string::iterator first_it = first.begin();
std::string::iterator second_it = second.begin();
std::string resultStr;
int carry = 0;
while(first_it != first.end()){
int sum = char2int(*first_it) + char2int(*second_it) + carry;
carry = 0;
if (sum >= 10){
sum = sum%10;
carry = 1;
}
resultStr += std::to_string(sum);
first_it++;second_it++;
}
if (carry){
resultStr += '1';
}
std::reverse(resultStr.begin(), resultStr.end());
return resultStr;
}
Integer Integer::operator-(const Integer& other) const{
std::string first = fString;
std::reverse(first.begin(), first.end());
std::string second = other.fString;
std::reverse(second.begin(), second.end());
// Equalize
equalizeLengthsPadRight(first,second);
std::string::iterator first_it = first.begin();
std::string::iterator second_it = second.begin();
std::string resultStr;
while(first_it != first.end()){
int up = char2int(*first_it);
int down = char2int(*second_it);
int localResult;
if (up >= down){
localResult = up-down;
}
else{
// Keep searching forward until you get a non-zero value
auto next_it = first_it+1;
while(true){
if (char2int(*next_it) > 0){
// Found the first non-zero number
break;
}
next_it++;
}
*next_it = std::to_string(char2int(*next_it)-1)[0];
// Now chase back to first_it setting 9's
// on the way. Make sure everything was 0
// beforehand
next_it--;
while(next_it != first_it){
assert(char2int(*next_it) == 0);
*next_it = std::to_string(9)[0];
next_it--;
}
localResult = up+10 -down;
}
assert(localResult>=0);
resultStr += std::to_string(localResult);
first_it++;
second_it++;
}
std::reverse(resultStr.begin(), resultStr.end());
return resultStr;
}
Integer Integer::operator*(const Integer& other) const {
// Only allow multiplication when size is 1
assert(size() == other.size() == 1);
return std::to_string(std::stoi(fString)*std::stoi(other.fString));
}
void Integer::padRight(size_t num){
fString += std::string(num, '0');
}
void Integer::padLeft(size_t num){
fString.insert(0,num,'0');
}
void Integer::print() const{
std::cout << fString << std::endl;
}
void Integer::stripLeadingZeros(){
// Don't strip if all are zeros - this will lead to an empty string
if (std::all_of(fString.cbegin(), fString.cend(), (char c){return ('0'== c); })){
return;
}
fString.erase(0, fString.find_first_not_of('0'));
}
Karatsuba multiplication
#include <string>
#include <assert.h>
#include <cmath>
#include "Integer.hpp"
Integer multiply(const Integer& inp1, const Integer& inp2){
Integer first = inp1;
Integer second = inp2;
equalizeLengthsPadLeft(first, second);
assert(first.size()==second.size());
size_t sz = first.size();
// Base case
if (sz == 1){
return first*second;
}
int n = sz/2;
Integer A = first.substr(0,n);
Integer B = first.substr(n, sz-n);
Integer C = second.substr(0,n);
Integer D = second.substr(n, sz-n);
Integer AC = multiply(A, C);
Integer BD = multiply(B, D);
Integer A_plus_B = A+B;
Integer C_plus_D = C+D;
Integer sum = multiply(A_plus_B, C_plus_D);
Integer AD_plus_BC = sum - AC - BD;
AC.padRight(2*(sz-n));
AD_plus_BC.padRight(sz-n);
Integer result = AC+ AD_plus_BC + BD;
result.stripLeadingZeros();
return result;
}
int main(){
Integer first("3141592653589793238462643383279502884197169399375105820974944592");
Integer second("2718281828459045235360287471352662497757247093699959574966967627");
Integer ans = multiply(first, second);
ans.print();
}
c++ algorithm
c++ algorithm
asked 5 mins ago
cppprogrammercppprogrammer
1659
1659
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "196"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f213686%2fkaratsuba-multiplication%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f213686%2fkaratsuba-multiplication%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown