How best to handle database and network errors within batches in kafka + spark streaming?











up vote
0
down vote

favorite












I'm trying to ensure all events get either written to the database if accepted by the schema, or logged out as errors, there should be no events completely lost due to any database, network errors etc.



This is what I have so far. It seems wrong to create a new RDD for each row in order to retry them individually but I can't see another way using the SQLContext.



  JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);

JavaInputDStream<ConsumerRecord<String, String>> stream =
KafkaUtils.createDirectStream(
new JavaStreamingContext(javaSparkContext, Durations.seconds(queryInterval)),
LocationStrategies.PreferConsistent(),
ConsumerStrategies.Subscribe(topics(), kafkaParameters())
);

SQLContext sqlContext = SQLContext.getOrCreate(javaSparkContext.sc());

stream.map(cr->row)
.foreachRDD(rowRDD -> {
try {
// try the batch
Dataset<Row> rowDataset = sqlContext.createDataFrame(rowRDD.rdd(), someStructType);
rowDataset
.write()
.mode(SaveMode.Append)
.jdbc(jdbcUrl(), jdbcTable(), jdbcConnectionProperties());
/*
Need to change to only Database Exceptions,
other exceptions will cause the event to fail, hence should retry from kafka
*/
} catch (Exception e1){
// try individually
rowRDD.foreach(row->{

// create RDD for each row, could be slow...
JavaRDD javaRDD = javaSparkContext.parallelize(Arrays.asList(row));
// try write for each RDD now containing only one item

int attempts = 0;
while (attempts<5){
attempts++;
try {
Dataset<Row> rowDataset = sqlContext.createDataFrame(javaRDD, someStructType);
rowDataset
.write()
.mode(SaveMode.Append)
.jdbc(jdbcUrl(), jdbcTable(), jdbcConnectionProperties());
/*
Need to change to only Database Exceptions,
if non database error i.e. network error need to retry here,
as should not retry the whole batch
*/
} catch (Exception e2){
LOG.warn("Event could not be written to database: ",e2);
break;
}
try {
// wait 1 second before retrying
Thread.sleep(1000);
} catch (InterruptedException e){}
}
});
}
});









share|improve this question


























    up vote
    0
    down vote

    favorite












    I'm trying to ensure all events get either written to the database if accepted by the schema, or logged out as errors, there should be no events completely lost due to any database, network errors etc.



    This is what I have so far. It seems wrong to create a new RDD for each row in order to retry them individually but I can't see another way using the SQLContext.



      JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);

    JavaInputDStream<ConsumerRecord<String, String>> stream =
    KafkaUtils.createDirectStream(
    new JavaStreamingContext(javaSparkContext, Durations.seconds(queryInterval)),
    LocationStrategies.PreferConsistent(),
    ConsumerStrategies.Subscribe(topics(), kafkaParameters())
    );

    SQLContext sqlContext = SQLContext.getOrCreate(javaSparkContext.sc());

    stream.map(cr->row)
    .foreachRDD(rowRDD -> {
    try {
    // try the batch
    Dataset<Row> rowDataset = sqlContext.createDataFrame(rowRDD.rdd(), someStructType);
    rowDataset
    .write()
    .mode(SaveMode.Append)
    .jdbc(jdbcUrl(), jdbcTable(), jdbcConnectionProperties());
    /*
    Need to change to only Database Exceptions,
    other exceptions will cause the event to fail, hence should retry from kafka
    */
    } catch (Exception e1){
    // try individually
    rowRDD.foreach(row->{

    // create RDD for each row, could be slow...
    JavaRDD javaRDD = javaSparkContext.parallelize(Arrays.asList(row));
    // try write for each RDD now containing only one item

    int attempts = 0;
    while (attempts<5){
    attempts++;
    try {
    Dataset<Row> rowDataset = sqlContext.createDataFrame(javaRDD, someStructType);
    rowDataset
    .write()
    .mode(SaveMode.Append)
    .jdbc(jdbcUrl(), jdbcTable(), jdbcConnectionProperties());
    /*
    Need to change to only Database Exceptions,
    if non database error i.e. network error need to retry here,
    as should not retry the whole batch
    */
    } catch (Exception e2){
    LOG.warn("Event could not be written to database: ",e2);
    break;
    }
    try {
    // wait 1 second before retrying
    Thread.sleep(1000);
    } catch (InterruptedException e){}
    }
    });
    }
    });









    share|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I'm trying to ensure all events get either written to the database if accepted by the schema, or logged out as errors, there should be no events completely lost due to any database, network errors etc.



      This is what I have so far. It seems wrong to create a new RDD for each row in order to retry them individually but I can't see another way using the SQLContext.



        JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);

      JavaInputDStream<ConsumerRecord<String, String>> stream =
      KafkaUtils.createDirectStream(
      new JavaStreamingContext(javaSparkContext, Durations.seconds(queryInterval)),
      LocationStrategies.PreferConsistent(),
      ConsumerStrategies.Subscribe(topics(), kafkaParameters())
      );

      SQLContext sqlContext = SQLContext.getOrCreate(javaSparkContext.sc());

      stream.map(cr->row)
      .foreachRDD(rowRDD -> {
      try {
      // try the batch
      Dataset<Row> rowDataset = sqlContext.createDataFrame(rowRDD.rdd(), someStructType);
      rowDataset
      .write()
      .mode(SaveMode.Append)
      .jdbc(jdbcUrl(), jdbcTable(), jdbcConnectionProperties());
      /*
      Need to change to only Database Exceptions,
      other exceptions will cause the event to fail, hence should retry from kafka
      */
      } catch (Exception e1){
      // try individually
      rowRDD.foreach(row->{

      // create RDD for each row, could be slow...
      JavaRDD javaRDD = javaSparkContext.parallelize(Arrays.asList(row));
      // try write for each RDD now containing only one item

      int attempts = 0;
      while (attempts<5){
      attempts++;
      try {
      Dataset<Row> rowDataset = sqlContext.createDataFrame(javaRDD, someStructType);
      rowDataset
      .write()
      .mode(SaveMode.Append)
      .jdbc(jdbcUrl(), jdbcTable(), jdbcConnectionProperties());
      /*
      Need to change to only Database Exceptions,
      if non database error i.e. network error need to retry here,
      as should not retry the whole batch
      */
      } catch (Exception e2){
      LOG.warn("Event could not be written to database: ",e2);
      break;
      }
      try {
      // wait 1 second before retrying
      Thread.sleep(1000);
      } catch (InterruptedException e){}
      }
      });
      }
      });









      share|improve this question













      I'm trying to ensure all events get either written to the database if accepted by the schema, or logged out as errors, there should be no events completely lost due to any database, network errors etc.



      This is what I have so far. It seems wrong to create a new RDD for each row in order to retry them individually but I can't see another way using the SQLContext.



        JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);

      JavaInputDStream<ConsumerRecord<String, String>> stream =
      KafkaUtils.createDirectStream(
      new JavaStreamingContext(javaSparkContext, Durations.seconds(queryInterval)),
      LocationStrategies.PreferConsistent(),
      ConsumerStrategies.Subscribe(topics(), kafkaParameters())
      );

      SQLContext sqlContext = SQLContext.getOrCreate(javaSparkContext.sc());

      stream.map(cr->row)
      .foreachRDD(rowRDD -> {
      try {
      // try the batch
      Dataset<Row> rowDataset = sqlContext.createDataFrame(rowRDD.rdd(), someStructType);
      rowDataset
      .write()
      .mode(SaveMode.Append)
      .jdbc(jdbcUrl(), jdbcTable(), jdbcConnectionProperties());
      /*
      Need to change to only Database Exceptions,
      other exceptions will cause the event to fail, hence should retry from kafka
      */
      } catch (Exception e1){
      // try individually
      rowRDD.foreach(row->{

      // create RDD for each row, could be slow...
      JavaRDD javaRDD = javaSparkContext.parallelize(Arrays.asList(row));
      // try write for each RDD now containing only one item

      int attempts = 0;
      while (attempts<5){
      attempts++;
      try {
      Dataset<Row> rowDataset = sqlContext.createDataFrame(javaRDD, someStructType);
      rowDataset
      .write()
      .mode(SaveMode.Append)
      .jdbc(jdbcUrl(), jdbcTable(), jdbcConnectionProperties());
      /*
      Need to change to only Database Exceptions,
      if non database error i.e. network error need to retry here,
      as should not retry the whole batch
      */
      } catch (Exception e2){
      LOG.warn("Event could not be written to database: ",e2);
      break;
      }
      try {
      // wait 1 second before retrying
      Thread.sleep(1000);
      } catch (InterruptedException e){}
      }
      });
      }
      });






      java sql apache-spark error-handling spark-streaming






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 20 at 17:55









      newlogic

      418312




      418312





























          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53398810%2fhow-best-to-handle-database-and-network-errors-within-batches-in-kafka-spark-s%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53398810%2fhow-best-to-handle-database-and-network-errors-within-batches-in-kafka-spark-s%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          404 Error Contact Form 7 ajax form submitting

          How to know if a Active Directory user can login interactively

          Refactoring coordinates for Minecraft Pi buildings written in Python