How best to handle database and network errors within batches in kafka + spark streaming?
up vote
0
down vote
favorite
I'm trying to ensure all events get either written to the database if accepted by the schema, or logged out as errors, there should be no events completely lost due to any database, network errors etc.
This is what I have so far. It seems wrong to create a new RDD for each row in order to retry them individually but I can't see another way using the SQLContext.
JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);
JavaInputDStream<ConsumerRecord<String, String>> stream =
KafkaUtils.createDirectStream(
new JavaStreamingContext(javaSparkContext, Durations.seconds(queryInterval)),
LocationStrategies.PreferConsistent(),
ConsumerStrategies.Subscribe(topics(), kafkaParameters())
);
SQLContext sqlContext = SQLContext.getOrCreate(javaSparkContext.sc());
stream.map(cr->row)
.foreachRDD(rowRDD -> {
try {
// try the batch
Dataset<Row> rowDataset = sqlContext.createDataFrame(rowRDD.rdd(), someStructType);
rowDataset
.write()
.mode(SaveMode.Append)
.jdbc(jdbcUrl(), jdbcTable(), jdbcConnectionProperties());
/*
Need to change to only Database Exceptions,
other exceptions will cause the event to fail, hence should retry from kafka
*/
} catch (Exception e1){
// try individually
rowRDD.foreach(row->{
// create RDD for each row, could be slow...
JavaRDD javaRDD = javaSparkContext.parallelize(Arrays.asList(row));
// try write for each RDD now containing only one item
int attempts = 0;
while (attempts<5){
attempts++;
try {
Dataset<Row> rowDataset = sqlContext.createDataFrame(javaRDD, someStructType);
rowDataset
.write()
.mode(SaveMode.Append)
.jdbc(jdbcUrl(), jdbcTable(), jdbcConnectionProperties());
/*
Need to change to only Database Exceptions,
if non database error i.e. network error need to retry here,
as should not retry the whole batch
*/
} catch (Exception e2){
LOG.warn("Event could not be written to database: ",e2);
break;
}
try {
// wait 1 second before retrying
Thread.sleep(1000);
} catch (InterruptedException e){}
}
});
}
});
java sql apache-spark error-handling spark-streaming
add a comment |
up vote
0
down vote
favorite
I'm trying to ensure all events get either written to the database if accepted by the schema, or logged out as errors, there should be no events completely lost due to any database, network errors etc.
This is what I have so far. It seems wrong to create a new RDD for each row in order to retry them individually but I can't see another way using the SQLContext.
JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);
JavaInputDStream<ConsumerRecord<String, String>> stream =
KafkaUtils.createDirectStream(
new JavaStreamingContext(javaSparkContext, Durations.seconds(queryInterval)),
LocationStrategies.PreferConsistent(),
ConsumerStrategies.Subscribe(topics(), kafkaParameters())
);
SQLContext sqlContext = SQLContext.getOrCreate(javaSparkContext.sc());
stream.map(cr->row)
.foreachRDD(rowRDD -> {
try {
// try the batch
Dataset<Row> rowDataset = sqlContext.createDataFrame(rowRDD.rdd(), someStructType);
rowDataset
.write()
.mode(SaveMode.Append)
.jdbc(jdbcUrl(), jdbcTable(), jdbcConnectionProperties());
/*
Need to change to only Database Exceptions,
other exceptions will cause the event to fail, hence should retry from kafka
*/
} catch (Exception e1){
// try individually
rowRDD.foreach(row->{
// create RDD for each row, could be slow...
JavaRDD javaRDD = javaSparkContext.parallelize(Arrays.asList(row));
// try write for each RDD now containing only one item
int attempts = 0;
while (attempts<5){
attempts++;
try {
Dataset<Row> rowDataset = sqlContext.createDataFrame(javaRDD, someStructType);
rowDataset
.write()
.mode(SaveMode.Append)
.jdbc(jdbcUrl(), jdbcTable(), jdbcConnectionProperties());
/*
Need to change to only Database Exceptions,
if non database error i.e. network error need to retry here,
as should not retry the whole batch
*/
} catch (Exception e2){
LOG.warn("Event could not be written to database: ",e2);
break;
}
try {
// wait 1 second before retrying
Thread.sleep(1000);
} catch (InterruptedException e){}
}
});
}
});
java sql apache-spark error-handling spark-streaming
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm trying to ensure all events get either written to the database if accepted by the schema, or logged out as errors, there should be no events completely lost due to any database, network errors etc.
This is what I have so far. It seems wrong to create a new RDD for each row in order to retry them individually but I can't see another way using the SQLContext.
JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);
JavaInputDStream<ConsumerRecord<String, String>> stream =
KafkaUtils.createDirectStream(
new JavaStreamingContext(javaSparkContext, Durations.seconds(queryInterval)),
LocationStrategies.PreferConsistent(),
ConsumerStrategies.Subscribe(topics(), kafkaParameters())
);
SQLContext sqlContext = SQLContext.getOrCreate(javaSparkContext.sc());
stream.map(cr->row)
.foreachRDD(rowRDD -> {
try {
// try the batch
Dataset<Row> rowDataset = sqlContext.createDataFrame(rowRDD.rdd(), someStructType);
rowDataset
.write()
.mode(SaveMode.Append)
.jdbc(jdbcUrl(), jdbcTable(), jdbcConnectionProperties());
/*
Need to change to only Database Exceptions,
other exceptions will cause the event to fail, hence should retry from kafka
*/
} catch (Exception e1){
// try individually
rowRDD.foreach(row->{
// create RDD for each row, could be slow...
JavaRDD javaRDD = javaSparkContext.parallelize(Arrays.asList(row));
// try write for each RDD now containing only one item
int attempts = 0;
while (attempts<5){
attempts++;
try {
Dataset<Row> rowDataset = sqlContext.createDataFrame(javaRDD, someStructType);
rowDataset
.write()
.mode(SaveMode.Append)
.jdbc(jdbcUrl(), jdbcTable(), jdbcConnectionProperties());
/*
Need to change to only Database Exceptions,
if non database error i.e. network error need to retry here,
as should not retry the whole batch
*/
} catch (Exception e2){
LOG.warn("Event could not be written to database: ",e2);
break;
}
try {
// wait 1 second before retrying
Thread.sleep(1000);
} catch (InterruptedException e){}
}
});
}
});
java sql apache-spark error-handling spark-streaming
I'm trying to ensure all events get either written to the database if accepted by the schema, or logged out as errors, there should be no events completely lost due to any database, network errors etc.
This is what I have so far. It seems wrong to create a new RDD for each row in order to retry them individually but I can't see another way using the SQLContext.
JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);
JavaInputDStream<ConsumerRecord<String, String>> stream =
KafkaUtils.createDirectStream(
new JavaStreamingContext(javaSparkContext, Durations.seconds(queryInterval)),
LocationStrategies.PreferConsistent(),
ConsumerStrategies.Subscribe(topics(), kafkaParameters())
);
SQLContext sqlContext = SQLContext.getOrCreate(javaSparkContext.sc());
stream.map(cr->row)
.foreachRDD(rowRDD -> {
try {
// try the batch
Dataset<Row> rowDataset = sqlContext.createDataFrame(rowRDD.rdd(), someStructType);
rowDataset
.write()
.mode(SaveMode.Append)
.jdbc(jdbcUrl(), jdbcTable(), jdbcConnectionProperties());
/*
Need to change to only Database Exceptions,
other exceptions will cause the event to fail, hence should retry from kafka
*/
} catch (Exception e1){
// try individually
rowRDD.foreach(row->{
// create RDD for each row, could be slow...
JavaRDD javaRDD = javaSparkContext.parallelize(Arrays.asList(row));
// try write for each RDD now containing only one item
int attempts = 0;
while (attempts<5){
attempts++;
try {
Dataset<Row> rowDataset = sqlContext.createDataFrame(javaRDD, someStructType);
rowDataset
.write()
.mode(SaveMode.Append)
.jdbc(jdbcUrl(), jdbcTable(), jdbcConnectionProperties());
/*
Need to change to only Database Exceptions,
if non database error i.e. network error need to retry here,
as should not retry the whole batch
*/
} catch (Exception e2){
LOG.warn("Event could not be written to database: ",e2);
break;
}
try {
// wait 1 second before retrying
Thread.sleep(1000);
} catch (InterruptedException e){}
}
});
}
});
java sql apache-spark error-handling spark-streaming
java sql apache-spark error-handling spark-streaming
asked Nov 20 at 17:55
newlogic
418312
418312
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53398810%2fhow-best-to-handle-database-and-network-errors-within-batches-in-kafka-spark-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53398810%2fhow-best-to-handle-database-and-network-errors-within-batches-in-kafka-spark-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown