Transfer between integrals and infinite sums











up vote
4
down vote

favorite
2












So I was watching a video on YouTube about how $$sum_{i=1}^infty frac{chi(i)}{i} = frac{pi}{4}$$ (note that $chi(i) = 0$ for even numbers $i$, $1$ for $text{mod}(i, 4) = 1$, and $-1$ for $text{mod}(i,4) = 3$) and one of the proofs shown involved stating that $$sum_{i=1}^infty frac{chi(i)}{i} = int_{0}^{1} sum_{i=0}^{infty}chi(i+1)x^{i}dx,.$$
My question is 1.) how is this done and 2.) how can this be replicated with different infinite sums. Thanks in advance!










share|cite|improve this question









New contributor




connor lane is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
























    up vote
    4
    down vote

    favorite
    2












    So I was watching a video on YouTube about how $$sum_{i=1}^infty frac{chi(i)}{i} = frac{pi}{4}$$ (note that $chi(i) = 0$ for even numbers $i$, $1$ for $text{mod}(i, 4) = 1$, and $-1$ for $text{mod}(i,4) = 3$) and one of the proofs shown involved stating that $$sum_{i=1}^infty frac{chi(i)}{i} = int_{0}^{1} sum_{i=0}^{infty}chi(i+1)x^{i}dx,.$$
    My question is 1.) how is this done and 2.) how can this be replicated with different infinite sums. Thanks in advance!










    share|cite|improve this question









    New contributor




    connor lane is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






















      up vote
      4
      down vote

      favorite
      2









      up vote
      4
      down vote

      favorite
      2






      2





      So I was watching a video on YouTube about how $$sum_{i=1}^infty frac{chi(i)}{i} = frac{pi}{4}$$ (note that $chi(i) = 0$ for even numbers $i$, $1$ for $text{mod}(i, 4) = 1$, and $-1$ for $text{mod}(i,4) = 3$) and one of the proofs shown involved stating that $$sum_{i=1}^infty frac{chi(i)}{i} = int_{0}^{1} sum_{i=0}^{infty}chi(i+1)x^{i}dx,.$$
      My question is 1.) how is this done and 2.) how can this be replicated with different infinite sums. Thanks in advance!










      share|cite|improve this question









      New contributor




      connor lane is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      So I was watching a video on YouTube about how $$sum_{i=1}^infty frac{chi(i)}{i} = frac{pi}{4}$$ (note that $chi(i) = 0$ for even numbers $i$, $1$ for $text{mod}(i, 4) = 1$, and $-1$ for $text{mod}(i,4) = 3$) and one of the proofs shown involved stating that $$sum_{i=1}^infty frac{chi(i)}{i} = int_{0}^{1} sum_{i=0}^{infty}chi(i+1)x^{i}dx,.$$
      My question is 1.) how is this done and 2.) how can this be replicated with different infinite sums. Thanks in advance!







      calculus integration sequences-and-series summation power-series






      share|cite|improve this question









      New contributor




      connor lane is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      connor lane is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 8 hours ago









      Batominovski

      31.3k23187




      31.3k23187






      New contributor




      connor lane is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 8 hours ago









      connor lane

      262




      262




      New contributor




      connor lane is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      connor lane is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      connor lane is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          5
          down vote



          accepted










          Note that, for all $igeq 1$,
          $$frac{1}{i} = int_0^1 x^{i-1} dx$$
          (this is a "trick" worth knowing), and therefore
          $$
          sum_{i=1}^infty frac{chi(i)}{i} =
          sum_{i=1}^infty chi(i)int_0^1 x^{i-1} dx
          =
          int_0^1sum_{i=1}^infty chi(i)x^{i-1} dx
          =
          int_0^1sum_{k=0}^infty chi(k+1)x^{k} dx
          $$

          where the only part which would require justification is when we swap $int_0^1$ and $sum_{i=1}^infty$: this is Tonelli-Fubini.






          share|cite|improve this answer




























            up vote
            3
            down vote













            If you have a power series
            $$f(x):=sum_{k=0}^infty,a_kx^k$$
            with radius of convergence $rgeq 1$ ($a_0,a_1,a_2,ldotsinmathbb{C}$), then $f_n|_{[0,1)}to f|_{[0,1)}$ uniformly on compact sets as $ntoinfty$, where $$f_n(x):=sum_{k=0}^n,a_kx^ktext{ for each }xinmathbb{C}text{ and }ninmathbb{Z}_{>0},.$$
            This provides a justification for swapping the infinite sum and the integral, that is,
            $$int_0^1,f(x),text{d}x=int_0^1,sum_{k=0}^infty,a_kx^k,text{d}x=sum_{k=0}^infty,int_0^1,a_kx^k,text{d}x=sum_{k=0}^infty,frac{a_{k}}{k+1},.$$





            In particular, the power series
            $$g(x):=sum_{k=0}^infty,chi(k+1),x^k$$
            has radius of convergence $dfrac{1}{limsuplimits_{ktoinfty},sqrt[k]{big|chi(k+1)big|}}=1$. Therefore, you can swap the integral and the infinite sum to obtain
            $$int_0^1,g(x),text{d}x=int_0^1,sum_{k=0}^infty,chi(k+1),x^k,text{d}x=sum_{k=0}^infty,frac{chi(k+1)}{k+1}=sum_{k=1}^infty,frac{chi(k)}{k},.$$



            Note that $x^4,g(x)=g(x)-1+x^2$, so $$g(x)=frac{1-x^2}{1-x^4}=frac{1}{1+x^2}text{ for all }xinmathbb{C}text{ such that }|x|<1,.$$
            That is,
            $$sum_{k=1}^infty,frac{chi(k)}{k}=int_0^1,frac{1}{1+x^2},text{d}x=arctan(x)big|_{x=0}^{x=1}=frac{pi}{4},.$$





            Alternatively, note that
            $$chi(k)=frac{text{i}^k-(-text{i})^k}{2text{i}}text{ for each }k=0,1,2,ldots,,$$
            where $text{i}$ is the imaginary unit $sqrt{-1}$. From the Taylor series of the principal branch of the natural logarithm function $$ln(1+z)=sum_{k=1}^infty,frac{(-1)^{k-1}}{k},z^k,,$$ we note that the series above converges for $z=pm text{i}$, yielding
            $$frac{1}{2},ln(2)+text{i}frac{pi}{4}=ln(1+text{i})=-sum_{k=1}^infty,frac{(-text{i})^k}{k}$$
            and
            $$frac{1}{2},ln(2)-text{i}frac{pi}{4}=ln(1-text{i})=-sum_{k=1}^infty,frac{text{i}^k}{k},.$$
            Subtracting the two equations above and dividing the result by $2text{i}$ yields
            $$frac{pi}{4}=sum_{k=1}^infty,frac{text{i}^k-(-text{i})^k}{2text{i},k}=sum_{k=1}^infty,frac{chi(k)}{k},.$$






            share|cite|improve this answer























            • For all this to work, you need to show that $g(1)$ converges and that seems to be the crux of the matter.
              – Matematleta
              6 hours ago










            • @Matematleta No, I don't need to know that. The integral can be viewed as the integral on the interval $[0,1)$. The important thing is that $g(x)$ converges absolutely for $xin[0,1)$, and that the partial sums of $g(x)$ converge to $g(x)$ uniformly on compact sets. And in fact, $g(1)$ diverges.
              – Batominovski
              6 hours ago












            • Right. So, as it stands, $int_0^1,g(x),text{d}x$ does not make sense. If you want to use the DCT, what is your dominating function?
              – Matematleta
              6 hours ago










            • @Matematleta I wasn't using the Dominated Convergence Theorem. It is a well known result that if $f_nto f$ uniformly on compact sets (i.e., $f_n$ compactly converges to $f$) and $Esubset mathbb{R}$ is a measurable set of finite measure, then $int_E,f_nto int_E,f$. But sure, if you want to use that theorem, then you can take the dominating function to be $1$. For all $xin[0,1)$, $big|g(x)big|leq 1$.
              – Batominovski
              5 hours ago












            • Got it! Thanks. I did not use the correct def of $chi.$ As for the well-known result, yes I know it, and my question is how does it apply since the partial sums of $g$ do not even converge pointwise on the compact set $[0,1]$,never mind uniformly. (Convergence fails at $x=1.$)
              – Matematleta
              5 hours ago













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            connor lane is a new contributor. Be nice, and check out our Code of Conduct.










             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006984%2ftransfer-between-integrals-and-infinite-sums%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            5
            down vote



            accepted










            Note that, for all $igeq 1$,
            $$frac{1}{i} = int_0^1 x^{i-1} dx$$
            (this is a "trick" worth knowing), and therefore
            $$
            sum_{i=1}^infty frac{chi(i)}{i} =
            sum_{i=1}^infty chi(i)int_0^1 x^{i-1} dx
            =
            int_0^1sum_{i=1}^infty chi(i)x^{i-1} dx
            =
            int_0^1sum_{k=0}^infty chi(k+1)x^{k} dx
            $$

            where the only part which would require justification is when we swap $int_0^1$ and $sum_{i=1}^infty$: this is Tonelli-Fubini.






            share|cite|improve this answer

























              up vote
              5
              down vote



              accepted










              Note that, for all $igeq 1$,
              $$frac{1}{i} = int_0^1 x^{i-1} dx$$
              (this is a "trick" worth knowing), and therefore
              $$
              sum_{i=1}^infty frac{chi(i)}{i} =
              sum_{i=1}^infty chi(i)int_0^1 x^{i-1} dx
              =
              int_0^1sum_{i=1}^infty chi(i)x^{i-1} dx
              =
              int_0^1sum_{k=0}^infty chi(k+1)x^{k} dx
              $$

              where the only part which would require justification is when we swap $int_0^1$ and $sum_{i=1}^infty$: this is Tonelli-Fubini.






              share|cite|improve this answer























                up vote
                5
                down vote



                accepted







                up vote
                5
                down vote



                accepted






                Note that, for all $igeq 1$,
                $$frac{1}{i} = int_0^1 x^{i-1} dx$$
                (this is a "trick" worth knowing), and therefore
                $$
                sum_{i=1}^infty frac{chi(i)}{i} =
                sum_{i=1}^infty chi(i)int_0^1 x^{i-1} dx
                =
                int_0^1sum_{i=1}^infty chi(i)x^{i-1} dx
                =
                int_0^1sum_{k=0}^infty chi(k+1)x^{k} dx
                $$

                where the only part which would require justification is when we swap $int_0^1$ and $sum_{i=1}^infty$: this is Tonelli-Fubini.






                share|cite|improve this answer












                Note that, for all $igeq 1$,
                $$frac{1}{i} = int_0^1 x^{i-1} dx$$
                (this is a "trick" worth knowing), and therefore
                $$
                sum_{i=1}^infty frac{chi(i)}{i} =
                sum_{i=1}^infty chi(i)int_0^1 x^{i-1} dx
                =
                int_0^1sum_{i=1}^infty chi(i)x^{i-1} dx
                =
                int_0^1sum_{k=0}^infty chi(k+1)x^{k} dx
                $$

                where the only part which would require justification is when we swap $int_0^1$ and $sum_{i=1}^infty$: this is Tonelli-Fubini.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 8 hours ago









                Clement C.

                48.6k33784




                48.6k33784






















                    up vote
                    3
                    down vote













                    If you have a power series
                    $$f(x):=sum_{k=0}^infty,a_kx^k$$
                    with radius of convergence $rgeq 1$ ($a_0,a_1,a_2,ldotsinmathbb{C}$), then $f_n|_{[0,1)}to f|_{[0,1)}$ uniformly on compact sets as $ntoinfty$, where $$f_n(x):=sum_{k=0}^n,a_kx^ktext{ for each }xinmathbb{C}text{ and }ninmathbb{Z}_{>0},.$$
                    This provides a justification for swapping the infinite sum and the integral, that is,
                    $$int_0^1,f(x),text{d}x=int_0^1,sum_{k=0}^infty,a_kx^k,text{d}x=sum_{k=0}^infty,int_0^1,a_kx^k,text{d}x=sum_{k=0}^infty,frac{a_{k}}{k+1},.$$





                    In particular, the power series
                    $$g(x):=sum_{k=0}^infty,chi(k+1),x^k$$
                    has radius of convergence $dfrac{1}{limsuplimits_{ktoinfty},sqrt[k]{big|chi(k+1)big|}}=1$. Therefore, you can swap the integral and the infinite sum to obtain
                    $$int_0^1,g(x),text{d}x=int_0^1,sum_{k=0}^infty,chi(k+1),x^k,text{d}x=sum_{k=0}^infty,frac{chi(k+1)}{k+1}=sum_{k=1}^infty,frac{chi(k)}{k},.$$



                    Note that $x^4,g(x)=g(x)-1+x^2$, so $$g(x)=frac{1-x^2}{1-x^4}=frac{1}{1+x^2}text{ for all }xinmathbb{C}text{ such that }|x|<1,.$$
                    That is,
                    $$sum_{k=1}^infty,frac{chi(k)}{k}=int_0^1,frac{1}{1+x^2},text{d}x=arctan(x)big|_{x=0}^{x=1}=frac{pi}{4},.$$





                    Alternatively, note that
                    $$chi(k)=frac{text{i}^k-(-text{i})^k}{2text{i}}text{ for each }k=0,1,2,ldots,,$$
                    where $text{i}$ is the imaginary unit $sqrt{-1}$. From the Taylor series of the principal branch of the natural logarithm function $$ln(1+z)=sum_{k=1}^infty,frac{(-1)^{k-1}}{k},z^k,,$$ we note that the series above converges for $z=pm text{i}$, yielding
                    $$frac{1}{2},ln(2)+text{i}frac{pi}{4}=ln(1+text{i})=-sum_{k=1}^infty,frac{(-text{i})^k}{k}$$
                    and
                    $$frac{1}{2},ln(2)-text{i}frac{pi}{4}=ln(1-text{i})=-sum_{k=1}^infty,frac{text{i}^k}{k},.$$
                    Subtracting the two equations above and dividing the result by $2text{i}$ yields
                    $$frac{pi}{4}=sum_{k=1}^infty,frac{text{i}^k-(-text{i})^k}{2text{i},k}=sum_{k=1}^infty,frac{chi(k)}{k},.$$






                    share|cite|improve this answer























                    • For all this to work, you need to show that $g(1)$ converges and that seems to be the crux of the matter.
                      – Matematleta
                      6 hours ago










                    • @Matematleta No, I don't need to know that. The integral can be viewed as the integral on the interval $[0,1)$. The important thing is that $g(x)$ converges absolutely for $xin[0,1)$, and that the partial sums of $g(x)$ converge to $g(x)$ uniformly on compact sets. And in fact, $g(1)$ diverges.
                      – Batominovski
                      6 hours ago












                    • Right. So, as it stands, $int_0^1,g(x),text{d}x$ does not make sense. If you want to use the DCT, what is your dominating function?
                      – Matematleta
                      6 hours ago










                    • @Matematleta I wasn't using the Dominated Convergence Theorem. It is a well known result that if $f_nto f$ uniformly on compact sets (i.e., $f_n$ compactly converges to $f$) and $Esubset mathbb{R}$ is a measurable set of finite measure, then $int_E,f_nto int_E,f$. But sure, if you want to use that theorem, then you can take the dominating function to be $1$. For all $xin[0,1)$, $big|g(x)big|leq 1$.
                      – Batominovski
                      5 hours ago












                    • Got it! Thanks. I did not use the correct def of $chi.$ As for the well-known result, yes I know it, and my question is how does it apply since the partial sums of $g$ do not even converge pointwise on the compact set $[0,1]$,never mind uniformly. (Convergence fails at $x=1.$)
                      – Matematleta
                      5 hours ago

















                    up vote
                    3
                    down vote













                    If you have a power series
                    $$f(x):=sum_{k=0}^infty,a_kx^k$$
                    with radius of convergence $rgeq 1$ ($a_0,a_1,a_2,ldotsinmathbb{C}$), then $f_n|_{[0,1)}to f|_{[0,1)}$ uniformly on compact sets as $ntoinfty$, where $$f_n(x):=sum_{k=0}^n,a_kx^ktext{ for each }xinmathbb{C}text{ and }ninmathbb{Z}_{>0},.$$
                    This provides a justification for swapping the infinite sum and the integral, that is,
                    $$int_0^1,f(x),text{d}x=int_0^1,sum_{k=0}^infty,a_kx^k,text{d}x=sum_{k=0}^infty,int_0^1,a_kx^k,text{d}x=sum_{k=0}^infty,frac{a_{k}}{k+1},.$$





                    In particular, the power series
                    $$g(x):=sum_{k=0}^infty,chi(k+1),x^k$$
                    has radius of convergence $dfrac{1}{limsuplimits_{ktoinfty},sqrt[k]{big|chi(k+1)big|}}=1$. Therefore, you can swap the integral and the infinite sum to obtain
                    $$int_0^1,g(x),text{d}x=int_0^1,sum_{k=0}^infty,chi(k+1),x^k,text{d}x=sum_{k=0}^infty,frac{chi(k+1)}{k+1}=sum_{k=1}^infty,frac{chi(k)}{k},.$$



                    Note that $x^4,g(x)=g(x)-1+x^2$, so $$g(x)=frac{1-x^2}{1-x^4}=frac{1}{1+x^2}text{ for all }xinmathbb{C}text{ such that }|x|<1,.$$
                    That is,
                    $$sum_{k=1}^infty,frac{chi(k)}{k}=int_0^1,frac{1}{1+x^2},text{d}x=arctan(x)big|_{x=0}^{x=1}=frac{pi}{4},.$$





                    Alternatively, note that
                    $$chi(k)=frac{text{i}^k-(-text{i})^k}{2text{i}}text{ for each }k=0,1,2,ldots,,$$
                    where $text{i}$ is the imaginary unit $sqrt{-1}$. From the Taylor series of the principal branch of the natural logarithm function $$ln(1+z)=sum_{k=1}^infty,frac{(-1)^{k-1}}{k},z^k,,$$ we note that the series above converges for $z=pm text{i}$, yielding
                    $$frac{1}{2},ln(2)+text{i}frac{pi}{4}=ln(1+text{i})=-sum_{k=1}^infty,frac{(-text{i})^k}{k}$$
                    and
                    $$frac{1}{2},ln(2)-text{i}frac{pi}{4}=ln(1-text{i})=-sum_{k=1}^infty,frac{text{i}^k}{k},.$$
                    Subtracting the two equations above and dividing the result by $2text{i}$ yields
                    $$frac{pi}{4}=sum_{k=1}^infty,frac{text{i}^k-(-text{i})^k}{2text{i},k}=sum_{k=1}^infty,frac{chi(k)}{k},.$$






                    share|cite|improve this answer























                    • For all this to work, you need to show that $g(1)$ converges and that seems to be the crux of the matter.
                      – Matematleta
                      6 hours ago










                    • @Matematleta No, I don't need to know that. The integral can be viewed as the integral on the interval $[0,1)$. The important thing is that $g(x)$ converges absolutely for $xin[0,1)$, and that the partial sums of $g(x)$ converge to $g(x)$ uniformly on compact sets. And in fact, $g(1)$ diverges.
                      – Batominovski
                      6 hours ago












                    • Right. So, as it stands, $int_0^1,g(x),text{d}x$ does not make sense. If you want to use the DCT, what is your dominating function?
                      – Matematleta
                      6 hours ago










                    • @Matematleta I wasn't using the Dominated Convergence Theorem. It is a well known result that if $f_nto f$ uniformly on compact sets (i.e., $f_n$ compactly converges to $f$) and $Esubset mathbb{R}$ is a measurable set of finite measure, then $int_E,f_nto int_E,f$. But sure, if you want to use that theorem, then you can take the dominating function to be $1$. For all $xin[0,1)$, $big|g(x)big|leq 1$.
                      – Batominovski
                      5 hours ago












                    • Got it! Thanks. I did not use the correct def of $chi.$ As for the well-known result, yes I know it, and my question is how does it apply since the partial sums of $g$ do not even converge pointwise on the compact set $[0,1]$,never mind uniformly. (Convergence fails at $x=1.$)
                      – Matematleta
                      5 hours ago















                    up vote
                    3
                    down vote










                    up vote
                    3
                    down vote









                    If you have a power series
                    $$f(x):=sum_{k=0}^infty,a_kx^k$$
                    with radius of convergence $rgeq 1$ ($a_0,a_1,a_2,ldotsinmathbb{C}$), then $f_n|_{[0,1)}to f|_{[0,1)}$ uniformly on compact sets as $ntoinfty$, where $$f_n(x):=sum_{k=0}^n,a_kx^ktext{ for each }xinmathbb{C}text{ and }ninmathbb{Z}_{>0},.$$
                    This provides a justification for swapping the infinite sum and the integral, that is,
                    $$int_0^1,f(x),text{d}x=int_0^1,sum_{k=0}^infty,a_kx^k,text{d}x=sum_{k=0}^infty,int_0^1,a_kx^k,text{d}x=sum_{k=0}^infty,frac{a_{k}}{k+1},.$$





                    In particular, the power series
                    $$g(x):=sum_{k=0}^infty,chi(k+1),x^k$$
                    has radius of convergence $dfrac{1}{limsuplimits_{ktoinfty},sqrt[k]{big|chi(k+1)big|}}=1$. Therefore, you can swap the integral and the infinite sum to obtain
                    $$int_0^1,g(x),text{d}x=int_0^1,sum_{k=0}^infty,chi(k+1),x^k,text{d}x=sum_{k=0}^infty,frac{chi(k+1)}{k+1}=sum_{k=1}^infty,frac{chi(k)}{k},.$$



                    Note that $x^4,g(x)=g(x)-1+x^2$, so $$g(x)=frac{1-x^2}{1-x^4}=frac{1}{1+x^2}text{ for all }xinmathbb{C}text{ such that }|x|<1,.$$
                    That is,
                    $$sum_{k=1}^infty,frac{chi(k)}{k}=int_0^1,frac{1}{1+x^2},text{d}x=arctan(x)big|_{x=0}^{x=1}=frac{pi}{4},.$$





                    Alternatively, note that
                    $$chi(k)=frac{text{i}^k-(-text{i})^k}{2text{i}}text{ for each }k=0,1,2,ldots,,$$
                    where $text{i}$ is the imaginary unit $sqrt{-1}$. From the Taylor series of the principal branch of the natural logarithm function $$ln(1+z)=sum_{k=1}^infty,frac{(-1)^{k-1}}{k},z^k,,$$ we note that the series above converges for $z=pm text{i}$, yielding
                    $$frac{1}{2},ln(2)+text{i}frac{pi}{4}=ln(1+text{i})=-sum_{k=1}^infty,frac{(-text{i})^k}{k}$$
                    and
                    $$frac{1}{2},ln(2)-text{i}frac{pi}{4}=ln(1-text{i})=-sum_{k=1}^infty,frac{text{i}^k}{k},.$$
                    Subtracting the two equations above and dividing the result by $2text{i}$ yields
                    $$frac{pi}{4}=sum_{k=1}^infty,frac{text{i}^k-(-text{i})^k}{2text{i},k}=sum_{k=1}^infty,frac{chi(k)}{k},.$$






                    share|cite|improve this answer














                    If you have a power series
                    $$f(x):=sum_{k=0}^infty,a_kx^k$$
                    with radius of convergence $rgeq 1$ ($a_0,a_1,a_2,ldotsinmathbb{C}$), then $f_n|_{[0,1)}to f|_{[0,1)}$ uniformly on compact sets as $ntoinfty$, where $$f_n(x):=sum_{k=0}^n,a_kx^ktext{ for each }xinmathbb{C}text{ and }ninmathbb{Z}_{>0},.$$
                    This provides a justification for swapping the infinite sum and the integral, that is,
                    $$int_0^1,f(x),text{d}x=int_0^1,sum_{k=0}^infty,a_kx^k,text{d}x=sum_{k=0}^infty,int_0^1,a_kx^k,text{d}x=sum_{k=0}^infty,frac{a_{k}}{k+1},.$$





                    In particular, the power series
                    $$g(x):=sum_{k=0}^infty,chi(k+1),x^k$$
                    has radius of convergence $dfrac{1}{limsuplimits_{ktoinfty},sqrt[k]{big|chi(k+1)big|}}=1$. Therefore, you can swap the integral and the infinite sum to obtain
                    $$int_0^1,g(x),text{d}x=int_0^1,sum_{k=0}^infty,chi(k+1),x^k,text{d}x=sum_{k=0}^infty,frac{chi(k+1)}{k+1}=sum_{k=1}^infty,frac{chi(k)}{k},.$$



                    Note that $x^4,g(x)=g(x)-1+x^2$, so $$g(x)=frac{1-x^2}{1-x^4}=frac{1}{1+x^2}text{ for all }xinmathbb{C}text{ such that }|x|<1,.$$
                    That is,
                    $$sum_{k=1}^infty,frac{chi(k)}{k}=int_0^1,frac{1}{1+x^2},text{d}x=arctan(x)big|_{x=0}^{x=1}=frac{pi}{4},.$$





                    Alternatively, note that
                    $$chi(k)=frac{text{i}^k-(-text{i})^k}{2text{i}}text{ for each }k=0,1,2,ldots,,$$
                    where $text{i}$ is the imaginary unit $sqrt{-1}$. From the Taylor series of the principal branch of the natural logarithm function $$ln(1+z)=sum_{k=1}^infty,frac{(-1)^{k-1}}{k},z^k,,$$ we note that the series above converges for $z=pm text{i}$, yielding
                    $$frac{1}{2},ln(2)+text{i}frac{pi}{4}=ln(1+text{i})=-sum_{k=1}^infty,frac{(-text{i})^k}{k}$$
                    and
                    $$frac{1}{2},ln(2)-text{i}frac{pi}{4}=ln(1-text{i})=-sum_{k=1}^infty,frac{text{i}^k}{k},.$$
                    Subtracting the two equations above and dividing the result by $2text{i}$ yields
                    $$frac{pi}{4}=sum_{k=1}^infty,frac{text{i}^k-(-text{i})^k}{2text{i},k}=sum_{k=1}^infty,frac{chi(k)}{k},.$$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 7 hours ago

























                    answered 8 hours ago









                    Batominovski

                    31.3k23187




                    31.3k23187












                    • For all this to work, you need to show that $g(1)$ converges and that seems to be the crux of the matter.
                      – Matematleta
                      6 hours ago










                    • @Matematleta No, I don't need to know that. The integral can be viewed as the integral on the interval $[0,1)$. The important thing is that $g(x)$ converges absolutely for $xin[0,1)$, and that the partial sums of $g(x)$ converge to $g(x)$ uniformly on compact sets. And in fact, $g(1)$ diverges.
                      – Batominovski
                      6 hours ago












                    • Right. So, as it stands, $int_0^1,g(x),text{d}x$ does not make sense. If you want to use the DCT, what is your dominating function?
                      – Matematleta
                      6 hours ago










                    • @Matematleta I wasn't using the Dominated Convergence Theorem. It is a well known result that if $f_nto f$ uniformly on compact sets (i.e., $f_n$ compactly converges to $f$) and $Esubset mathbb{R}$ is a measurable set of finite measure, then $int_E,f_nto int_E,f$. But sure, if you want to use that theorem, then you can take the dominating function to be $1$. For all $xin[0,1)$, $big|g(x)big|leq 1$.
                      – Batominovski
                      5 hours ago












                    • Got it! Thanks. I did not use the correct def of $chi.$ As for the well-known result, yes I know it, and my question is how does it apply since the partial sums of $g$ do not even converge pointwise on the compact set $[0,1]$,never mind uniformly. (Convergence fails at $x=1.$)
                      – Matematleta
                      5 hours ago




















                    • For all this to work, you need to show that $g(1)$ converges and that seems to be the crux of the matter.
                      – Matematleta
                      6 hours ago










                    • @Matematleta No, I don't need to know that. The integral can be viewed as the integral on the interval $[0,1)$. The important thing is that $g(x)$ converges absolutely for $xin[0,1)$, and that the partial sums of $g(x)$ converge to $g(x)$ uniformly on compact sets. And in fact, $g(1)$ diverges.
                      – Batominovski
                      6 hours ago












                    • Right. So, as it stands, $int_0^1,g(x),text{d}x$ does not make sense. If you want to use the DCT, what is your dominating function?
                      – Matematleta
                      6 hours ago










                    • @Matematleta I wasn't using the Dominated Convergence Theorem. It is a well known result that if $f_nto f$ uniformly on compact sets (i.e., $f_n$ compactly converges to $f$) and $Esubset mathbb{R}$ is a measurable set of finite measure, then $int_E,f_nto int_E,f$. But sure, if you want to use that theorem, then you can take the dominating function to be $1$. For all $xin[0,1)$, $big|g(x)big|leq 1$.
                      – Batominovski
                      5 hours ago












                    • Got it! Thanks. I did not use the correct def of $chi.$ As for the well-known result, yes I know it, and my question is how does it apply since the partial sums of $g$ do not even converge pointwise on the compact set $[0,1]$,never mind uniformly. (Convergence fails at $x=1.$)
                      – Matematleta
                      5 hours ago


















                    For all this to work, you need to show that $g(1)$ converges and that seems to be the crux of the matter.
                    – Matematleta
                    6 hours ago




                    For all this to work, you need to show that $g(1)$ converges and that seems to be the crux of the matter.
                    – Matematleta
                    6 hours ago












                    @Matematleta No, I don't need to know that. The integral can be viewed as the integral on the interval $[0,1)$. The important thing is that $g(x)$ converges absolutely for $xin[0,1)$, and that the partial sums of $g(x)$ converge to $g(x)$ uniformly on compact sets. And in fact, $g(1)$ diverges.
                    – Batominovski
                    6 hours ago






                    @Matematleta No, I don't need to know that. The integral can be viewed as the integral on the interval $[0,1)$. The important thing is that $g(x)$ converges absolutely for $xin[0,1)$, and that the partial sums of $g(x)$ converge to $g(x)$ uniformly on compact sets. And in fact, $g(1)$ diverges.
                    – Batominovski
                    6 hours ago














                    Right. So, as it stands, $int_0^1,g(x),text{d}x$ does not make sense. If you want to use the DCT, what is your dominating function?
                    – Matematleta
                    6 hours ago




                    Right. So, as it stands, $int_0^1,g(x),text{d}x$ does not make sense. If you want to use the DCT, what is your dominating function?
                    – Matematleta
                    6 hours ago












                    @Matematleta I wasn't using the Dominated Convergence Theorem. It is a well known result that if $f_nto f$ uniformly on compact sets (i.e., $f_n$ compactly converges to $f$) and $Esubset mathbb{R}$ is a measurable set of finite measure, then $int_E,f_nto int_E,f$. But sure, if you want to use that theorem, then you can take the dominating function to be $1$. For all $xin[0,1)$, $big|g(x)big|leq 1$.
                    – Batominovski
                    5 hours ago






                    @Matematleta I wasn't using the Dominated Convergence Theorem. It is a well known result that if $f_nto f$ uniformly on compact sets (i.e., $f_n$ compactly converges to $f$) and $Esubset mathbb{R}$ is a measurable set of finite measure, then $int_E,f_nto int_E,f$. But sure, if you want to use that theorem, then you can take the dominating function to be $1$. For all $xin[0,1)$, $big|g(x)big|leq 1$.
                    – Batominovski
                    5 hours ago














                    Got it! Thanks. I did not use the correct def of $chi.$ As for the well-known result, yes I know it, and my question is how does it apply since the partial sums of $g$ do not even converge pointwise on the compact set $[0,1]$,never mind uniformly. (Convergence fails at $x=1.$)
                    – Matematleta
                    5 hours ago






                    Got it! Thanks. I did not use the correct def of $chi.$ As for the well-known result, yes I know it, and my question is how does it apply since the partial sums of $g$ do not even converge pointwise on the compact set $[0,1]$,never mind uniformly. (Convergence fails at $x=1.$)
                    – Matematleta
                    5 hours ago












                    connor lane is a new contributor. Be nice, and check out our Code of Conduct.










                     

                    draft saved


                    draft discarded


















                    connor lane is a new contributor. Be nice, and check out our Code of Conduct.













                    connor lane is a new contributor. Be nice, and check out our Code of Conduct.












                    connor lane is a new contributor. Be nice, and check out our Code of Conduct.















                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006984%2ftransfer-between-integrals-and-infinite-sums%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    404 Error Contact Form 7 ajax form submitting

                    How to know if a Active Directory user can login interactively

                    TypeError: fit_transform() missing 1 required positional argument: 'X'