separate column with unknown name












2















I have a data frame like this:



structure(list(header = 1:10, ST.adk.fumC.gyrB.icd.mdh.purA.recA = c(" 10 10 11 4 8 8 8 2", 
" 48 6 11 4 8 8 8 2", " 58 6 4 4 16 24 8 14", " 88* 6* 4 12 1 20 12 7",
" 117 20 45 41 43 5 32 2", " 7036 526 7 1 1 8 71 6", " 101 43 41 15 18 11 7 6",
" 3595 112 11 5 12 8 88 86", " 117 20 45 41 43 5 32 2", " 744 10 11 135 8 8 8 2"
)), row.names = c(NA, -10L), class = c("tbl_df", "tbl", "data.frame"
))


What I want to do is to split the second column into separate columns, separated by the "." in the column name. However, it's not always known what the name of the column is, which is why I cannot use the name of the column in dplyr' "separate" function.



I tried the following:



library(dplyr)
library(stringr)
library(tidyr)

# get new column names
ids <- unlist(strsplit(names(df)[-1],
split = ".",
fixed = TRUE))

# get name of column to split
split_column <- names(df)[-1]

df %>%
separate(split_column, into = ids, extra = "merge")


This works within the script file I am using, but when i source the script I get the following error:



Error: `var` must evaluate to a single number or a column name, not a character vector


Why does this work when I run it like normal in RStudio, but when I source the script it throws this error?
Also, is this the optimal way of actually splitting a column of unknown name into new columns with unknown names?



I source the script with the following code, in another script file:



system(paste("Rscript script.R", opt$m, opt$o))


Where opt$m and opt$o are directory paths. This works fine with a similar script I have, but with the script above it throws an error.



I was hoping for some kind of function like separate_at, but that doesn't exist as of yet..










share|improve this question

























  • Works fine for me: R version 3.4.2, tidyr_0.8.1 dplyr_0.7.7

    – zx8754
    Nov 23 '18 at 12:54











  • You might have different versions of R or packages, when using Rstudio vs using sourcing the script.

    – zx8754
    Nov 23 '18 at 12:55











  • @zx8754 yes I think that must be the case - I will check out the versions

    – Haakonkas
    Nov 23 '18 at 12:59











  • Cannot reproduce. Two things: you might want to run your split column through trimws() before separating, otherwise your first column will be blank with the data you gave. Second - consider calling tidyr::separate(), as your script maybe accessing a different package for some reason.

    – iod
    Nov 23 '18 at 13:00











  • (also, separate is from tidyr, not dplyr)

    – iod
    Nov 23 '18 at 13:01
















2















I have a data frame like this:



structure(list(header = 1:10, ST.adk.fumC.gyrB.icd.mdh.purA.recA = c(" 10 10 11 4 8 8 8 2", 
" 48 6 11 4 8 8 8 2", " 58 6 4 4 16 24 8 14", " 88* 6* 4 12 1 20 12 7",
" 117 20 45 41 43 5 32 2", " 7036 526 7 1 1 8 71 6", " 101 43 41 15 18 11 7 6",
" 3595 112 11 5 12 8 88 86", " 117 20 45 41 43 5 32 2", " 744 10 11 135 8 8 8 2"
)), row.names = c(NA, -10L), class = c("tbl_df", "tbl", "data.frame"
))


What I want to do is to split the second column into separate columns, separated by the "." in the column name. However, it's not always known what the name of the column is, which is why I cannot use the name of the column in dplyr' "separate" function.



I tried the following:



library(dplyr)
library(stringr)
library(tidyr)

# get new column names
ids <- unlist(strsplit(names(df)[-1],
split = ".",
fixed = TRUE))

# get name of column to split
split_column <- names(df)[-1]

df %>%
separate(split_column, into = ids, extra = "merge")


This works within the script file I am using, but when i source the script I get the following error:



Error: `var` must evaluate to a single number or a column name, not a character vector


Why does this work when I run it like normal in RStudio, but when I source the script it throws this error?
Also, is this the optimal way of actually splitting a column of unknown name into new columns with unknown names?



I source the script with the following code, in another script file:



system(paste("Rscript script.R", opt$m, opt$o))


Where opt$m and opt$o are directory paths. This works fine with a similar script I have, but with the script above it throws an error.



I was hoping for some kind of function like separate_at, but that doesn't exist as of yet..










share|improve this question

























  • Works fine for me: R version 3.4.2, tidyr_0.8.1 dplyr_0.7.7

    – zx8754
    Nov 23 '18 at 12:54











  • You might have different versions of R or packages, when using Rstudio vs using sourcing the script.

    – zx8754
    Nov 23 '18 at 12:55











  • @zx8754 yes I think that must be the case - I will check out the versions

    – Haakonkas
    Nov 23 '18 at 12:59











  • Cannot reproduce. Two things: you might want to run your split column through trimws() before separating, otherwise your first column will be blank with the data you gave. Second - consider calling tidyr::separate(), as your script maybe accessing a different package for some reason.

    – iod
    Nov 23 '18 at 13:00











  • (also, separate is from tidyr, not dplyr)

    – iod
    Nov 23 '18 at 13:01














2












2








2








I have a data frame like this:



structure(list(header = 1:10, ST.adk.fumC.gyrB.icd.mdh.purA.recA = c(" 10 10 11 4 8 8 8 2", 
" 48 6 11 4 8 8 8 2", " 58 6 4 4 16 24 8 14", " 88* 6* 4 12 1 20 12 7",
" 117 20 45 41 43 5 32 2", " 7036 526 7 1 1 8 71 6", " 101 43 41 15 18 11 7 6",
" 3595 112 11 5 12 8 88 86", " 117 20 45 41 43 5 32 2", " 744 10 11 135 8 8 8 2"
)), row.names = c(NA, -10L), class = c("tbl_df", "tbl", "data.frame"
))


What I want to do is to split the second column into separate columns, separated by the "." in the column name. However, it's not always known what the name of the column is, which is why I cannot use the name of the column in dplyr' "separate" function.



I tried the following:



library(dplyr)
library(stringr)
library(tidyr)

# get new column names
ids <- unlist(strsplit(names(df)[-1],
split = ".",
fixed = TRUE))

# get name of column to split
split_column <- names(df)[-1]

df %>%
separate(split_column, into = ids, extra = "merge")


This works within the script file I am using, but when i source the script I get the following error:



Error: `var` must evaluate to a single number or a column name, not a character vector


Why does this work when I run it like normal in RStudio, but when I source the script it throws this error?
Also, is this the optimal way of actually splitting a column of unknown name into new columns with unknown names?



I source the script with the following code, in another script file:



system(paste("Rscript script.R", opt$m, opt$o))


Where opt$m and opt$o are directory paths. This works fine with a similar script I have, but with the script above it throws an error.



I was hoping for some kind of function like separate_at, but that doesn't exist as of yet..










share|improve this question
















I have a data frame like this:



structure(list(header = 1:10, ST.adk.fumC.gyrB.icd.mdh.purA.recA = c(" 10 10 11 4 8 8 8 2", 
" 48 6 11 4 8 8 8 2", " 58 6 4 4 16 24 8 14", " 88* 6* 4 12 1 20 12 7",
" 117 20 45 41 43 5 32 2", " 7036 526 7 1 1 8 71 6", " 101 43 41 15 18 11 7 6",
" 3595 112 11 5 12 8 88 86", " 117 20 45 41 43 5 32 2", " 744 10 11 135 8 8 8 2"
)), row.names = c(NA, -10L), class = c("tbl_df", "tbl", "data.frame"
))


What I want to do is to split the second column into separate columns, separated by the "." in the column name. However, it's not always known what the name of the column is, which is why I cannot use the name of the column in dplyr' "separate" function.



I tried the following:



library(dplyr)
library(stringr)
library(tidyr)

# get new column names
ids <- unlist(strsplit(names(df)[-1],
split = ".",
fixed = TRUE))

# get name of column to split
split_column <- names(df)[-1]

df %>%
separate(split_column, into = ids, extra = "merge")


This works within the script file I am using, but when i source the script I get the following error:



Error: `var` must evaluate to a single number or a column name, not a character vector


Why does this work when I run it like normal in RStudio, but when I source the script it throws this error?
Also, is this the optimal way of actually splitting a column of unknown name into new columns with unknown names?



I source the script with the following code, in another script file:



system(paste("Rscript script.R", opt$m, opt$o))


Where opt$m and opt$o are directory paths. This works fine with a similar script I have, but with the script above it throws an error.



I was hoping for some kind of function like separate_at, but that doesn't exist as of yet..







r dplyr tidyr






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 24 '18 at 11:08









jay.sf

4,83021539




4,83021539










asked Nov 23 '18 at 12:43









HaakonkasHaakonkas

390111




390111













  • Works fine for me: R version 3.4.2, tidyr_0.8.1 dplyr_0.7.7

    – zx8754
    Nov 23 '18 at 12:54











  • You might have different versions of R or packages, when using Rstudio vs using sourcing the script.

    – zx8754
    Nov 23 '18 at 12:55











  • @zx8754 yes I think that must be the case - I will check out the versions

    – Haakonkas
    Nov 23 '18 at 12:59











  • Cannot reproduce. Two things: you might want to run your split column through trimws() before separating, otherwise your first column will be blank with the data you gave. Second - consider calling tidyr::separate(), as your script maybe accessing a different package for some reason.

    – iod
    Nov 23 '18 at 13:00











  • (also, separate is from tidyr, not dplyr)

    – iod
    Nov 23 '18 at 13:01



















  • Works fine for me: R version 3.4.2, tidyr_0.8.1 dplyr_0.7.7

    – zx8754
    Nov 23 '18 at 12:54











  • You might have different versions of R or packages, when using Rstudio vs using sourcing the script.

    – zx8754
    Nov 23 '18 at 12:55











  • @zx8754 yes I think that must be the case - I will check out the versions

    – Haakonkas
    Nov 23 '18 at 12:59











  • Cannot reproduce. Two things: you might want to run your split column through trimws() before separating, otherwise your first column will be blank with the data you gave. Second - consider calling tidyr::separate(), as your script maybe accessing a different package for some reason.

    – iod
    Nov 23 '18 at 13:00











  • (also, separate is from tidyr, not dplyr)

    – iod
    Nov 23 '18 at 13:01

















Works fine for me: R version 3.4.2, tidyr_0.8.1 dplyr_0.7.7

– zx8754
Nov 23 '18 at 12:54





Works fine for me: R version 3.4.2, tidyr_0.8.1 dplyr_0.7.7

– zx8754
Nov 23 '18 at 12:54













You might have different versions of R or packages, when using Rstudio vs using sourcing the script.

– zx8754
Nov 23 '18 at 12:55





You might have different versions of R or packages, when using Rstudio vs using sourcing the script.

– zx8754
Nov 23 '18 at 12:55













@zx8754 yes I think that must be the case - I will check out the versions

– Haakonkas
Nov 23 '18 at 12:59





@zx8754 yes I think that must be the case - I will check out the versions

– Haakonkas
Nov 23 '18 at 12:59













Cannot reproduce. Two things: you might want to run your split column through trimws() before separating, otherwise your first column will be blank with the data you gave. Second - consider calling tidyr::separate(), as your script maybe accessing a different package for some reason.

– iod
Nov 23 '18 at 13:00





Cannot reproduce. Two things: you might want to run your split column through trimws() before separating, otherwise your first column will be blank with the data you gave. Second - consider calling tidyr::separate(), as your script maybe accessing a different package for some reason.

– iod
Nov 23 '18 at 13:00













(also, separate is from tidyr, not dplyr)

– iod
Nov 23 '18 at 13:01





(also, separate is from tidyr, not dplyr)

– iod
Nov 23 '18 at 13:01












2 Answers
2






active

oldest

votes


















0














Pretty much the same solution as your example with a few tweaks. This is how I would do it, assuming you want to remove the '*' in the columns:



library(tidyverse)
library(hablar)

# Vector of new column names
ids <- simplify(strsplit(names(df)[-1],
split = ".",
fixed = T))

# Seperate second column
df %>%
mutate_at(2, funs(trimws(gsub("\*", "", .)))) %>%
separate(2, into = ids, extra = "merge", sep = " ") %>%
retype()


gives you:



# A tibble: 10 x 9
header ST adk fumC gyrB icd mdh purA recA
<int> <int> <int> <int> <int> <int> <int> <int> <int>
1 1 10 10 11 4 8 8 8 2
2 2 48 6 11 4 8 8 8 2
3 3 58 6 4 4 16 24 8 14
4 4 88 6 4 12 1 20 12 7
5 5 117 20 45 41 43 5 32 2
6 6 7036 526 7 1 1 8 71 6
7 7 101 43 41 15 18 11 7 6
8 8 3595 112 11 5 12 8 88 86
9 9 117 20 45 41 43 5 32 2
10 10 744 10 11 135 8 8 8 2





share|improve this answer

































    0














    You could use strsplit().



    split <- do.call(rbind, strsplit(gsub("\*", "", df[, -1]), " "))[, -1]
    df1 <- data.frame(df[, 1], split)
    df1 <- lapply(df1, function(x) as.numeric(as.character(x)))
    names(df1) <- unlist(strsplit(names(df), split = ".", fixed=TRUE))

    > df1
    header ST adk fumC gyrB icd mdh purA recA
    1 1 10 10 11 4 8 8 8 2
    2 2 48 6 11 4 8 8 8 2
    3 3 58 6 4 4 16 24 8 14
    4 4 88 6 4 12 1 20 12 7
    5 5 117 20 45 41 43 5 32 2
    6 6 7036 526 7 1 1 8 71 6
    7 7 101 43 41 15 18 11 7 6
    8 8 3595 112 11 5 12 8 88 86
    9 9 117 20 45 41 43 5 32 2
    10 10 744 10 11 135 8 8 8 2


    Data



    df <-structure(list(header = 1:10, ST.adk.fumC.gyrB.icd.mdh.purA.recA = c(" 10 10 11 4 8 8 8 2", 
    " 48 6 11 4 8 8 8 2", " 58 6 4 4 16 24 8 14", " 88* 6* 4 12 1 20 12 7",
    " 117 20 45 41 43 5 32 2", " 7036 526 7 1 1 8 71 6", " 101 43 41 15 18 11 7 6",
    " 3595 112 11 5 12 8 88 86", " 117 20 45 41 43 5 32 2", " 744 10 11 135 8 8 8 2"
    )), row.names = c(NA, -10L), class = c("tbl_df", "tbl", "data.frame"
    ))





    share|improve this answer

























      Your Answer






      StackExchange.ifUsing("editor", function () {
      StackExchange.using("externalEditor", function () {
      StackExchange.using("snippets", function () {
      StackExchange.snippets.init();
      });
      });
      }, "code-snippets");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "1"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53446945%2fseparate-column-with-unknown-name%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      0














      Pretty much the same solution as your example with a few tweaks. This is how I would do it, assuming you want to remove the '*' in the columns:



      library(tidyverse)
      library(hablar)

      # Vector of new column names
      ids <- simplify(strsplit(names(df)[-1],
      split = ".",
      fixed = T))

      # Seperate second column
      df %>%
      mutate_at(2, funs(trimws(gsub("\*", "", .)))) %>%
      separate(2, into = ids, extra = "merge", sep = " ") %>%
      retype()


      gives you:



      # A tibble: 10 x 9
      header ST adk fumC gyrB icd mdh purA recA
      <int> <int> <int> <int> <int> <int> <int> <int> <int>
      1 1 10 10 11 4 8 8 8 2
      2 2 48 6 11 4 8 8 8 2
      3 3 58 6 4 4 16 24 8 14
      4 4 88 6 4 12 1 20 12 7
      5 5 117 20 45 41 43 5 32 2
      6 6 7036 526 7 1 1 8 71 6
      7 7 101 43 41 15 18 11 7 6
      8 8 3595 112 11 5 12 8 88 86
      9 9 117 20 45 41 43 5 32 2
      10 10 744 10 11 135 8 8 8 2





      share|improve this answer






























        0














        Pretty much the same solution as your example with a few tweaks. This is how I would do it, assuming you want to remove the '*' in the columns:



        library(tidyverse)
        library(hablar)

        # Vector of new column names
        ids <- simplify(strsplit(names(df)[-1],
        split = ".",
        fixed = T))

        # Seperate second column
        df %>%
        mutate_at(2, funs(trimws(gsub("\*", "", .)))) %>%
        separate(2, into = ids, extra = "merge", sep = " ") %>%
        retype()


        gives you:



        # A tibble: 10 x 9
        header ST adk fumC gyrB icd mdh purA recA
        <int> <int> <int> <int> <int> <int> <int> <int> <int>
        1 1 10 10 11 4 8 8 8 2
        2 2 48 6 11 4 8 8 8 2
        3 3 58 6 4 4 16 24 8 14
        4 4 88 6 4 12 1 20 12 7
        5 5 117 20 45 41 43 5 32 2
        6 6 7036 526 7 1 1 8 71 6
        7 7 101 43 41 15 18 11 7 6
        8 8 3595 112 11 5 12 8 88 86
        9 9 117 20 45 41 43 5 32 2
        10 10 744 10 11 135 8 8 8 2





        share|improve this answer




























          0












          0








          0







          Pretty much the same solution as your example with a few tweaks. This is how I would do it, assuming you want to remove the '*' in the columns:



          library(tidyverse)
          library(hablar)

          # Vector of new column names
          ids <- simplify(strsplit(names(df)[-1],
          split = ".",
          fixed = T))

          # Seperate second column
          df %>%
          mutate_at(2, funs(trimws(gsub("\*", "", .)))) %>%
          separate(2, into = ids, extra = "merge", sep = " ") %>%
          retype()


          gives you:



          # A tibble: 10 x 9
          header ST adk fumC gyrB icd mdh purA recA
          <int> <int> <int> <int> <int> <int> <int> <int> <int>
          1 1 10 10 11 4 8 8 8 2
          2 2 48 6 11 4 8 8 8 2
          3 3 58 6 4 4 16 24 8 14
          4 4 88 6 4 12 1 20 12 7
          5 5 117 20 45 41 43 5 32 2
          6 6 7036 526 7 1 1 8 71 6
          7 7 101 43 41 15 18 11 7 6
          8 8 3595 112 11 5 12 8 88 86
          9 9 117 20 45 41 43 5 32 2
          10 10 744 10 11 135 8 8 8 2





          share|improve this answer















          Pretty much the same solution as your example with a few tweaks. This is how I would do it, assuming you want to remove the '*' in the columns:



          library(tidyverse)
          library(hablar)

          # Vector of new column names
          ids <- simplify(strsplit(names(df)[-1],
          split = ".",
          fixed = T))

          # Seperate second column
          df %>%
          mutate_at(2, funs(trimws(gsub("\*", "", .)))) %>%
          separate(2, into = ids, extra = "merge", sep = " ") %>%
          retype()


          gives you:



          # A tibble: 10 x 9
          header ST adk fumC gyrB icd mdh purA recA
          <int> <int> <int> <int> <int> <int> <int> <int> <int>
          1 1 10 10 11 4 8 8 8 2
          2 2 48 6 11 4 8 8 8 2
          3 3 58 6 4 4 16 24 8 14
          4 4 88 6 4 12 1 20 12 7
          5 5 117 20 45 41 43 5 32 2
          6 6 7036 526 7 1 1 8 71 6
          7 7 101 43 41 15 18 11 7 6
          8 8 3595 112 11 5 12 8 88 86
          9 9 117 20 45 41 43 5 32 2
          10 10 744 10 11 135 8 8 8 2






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Nov 24 '18 at 11:08

























          answered Nov 24 '18 at 10:56









          davsjobdavsjob

          57236




          57236

























              0














              You could use strsplit().



              split <- do.call(rbind, strsplit(gsub("\*", "", df[, -1]), " "))[, -1]
              df1 <- data.frame(df[, 1], split)
              df1 <- lapply(df1, function(x) as.numeric(as.character(x)))
              names(df1) <- unlist(strsplit(names(df), split = ".", fixed=TRUE))

              > df1
              header ST adk fumC gyrB icd mdh purA recA
              1 1 10 10 11 4 8 8 8 2
              2 2 48 6 11 4 8 8 8 2
              3 3 58 6 4 4 16 24 8 14
              4 4 88 6 4 12 1 20 12 7
              5 5 117 20 45 41 43 5 32 2
              6 6 7036 526 7 1 1 8 71 6
              7 7 101 43 41 15 18 11 7 6
              8 8 3595 112 11 5 12 8 88 86
              9 9 117 20 45 41 43 5 32 2
              10 10 744 10 11 135 8 8 8 2


              Data



              df <-structure(list(header = 1:10, ST.adk.fumC.gyrB.icd.mdh.purA.recA = c(" 10 10 11 4 8 8 8 2", 
              " 48 6 11 4 8 8 8 2", " 58 6 4 4 16 24 8 14", " 88* 6* 4 12 1 20 12 7",
              " 117 20 45 41 43 5 32 2", " 7036 526 7 1 1 8 71 6", " 101 43 41 15 18 11 7 6",
              " 3595 112 11 5 12 8 88 86", " 117 20 45 41 43 5 32 2", " 744 10 11 135 8 8 8 2"
              )), row.names = c(NA, -10L), class = c("tbl_df", "tbl", "data.frame"
              ))





              share|improve this answer






























                0














                You could use strsplit().



                split <- do.call(rbind, strsplit(gsub("\*", "", df[, -1]), " "))[, -1]
                df1 <- data.frame(df[, 1], split)
                df1 <- lapply(df1, function(x) as.numeric(as.character(x)))
                names(df1) <- unlist(strsplit(names(df), split = ".", fixed=TRUE))

                > df1
                header ST adk fumC gyrB icd mdh purA recA
                1 1 10 10 11 4 8 8 8 2
                2 2 48 6 11 4 8 8 8 2
                3 3 58 6 4 4 16 24 8 14
                4 4 88 6 4 12 1 20 12 7
                5 5 117 20 45 41 43 5 32 2
                6 6 7036 526 7 1 1 8 71 6
                7 7 101 43 41 15 18 11 7 6
                8 8 3595 112 11 5 12 8 88 86
                9 9 117 20 45 41 43 5 32 2
                10 10 744 10 11 135 8 8 8 2


                Data



                df <-structure(list(header = 1:10, ST.adk.fumC.gyrB.icd.mdh.purA.recA = c(" 10 10 11 4 8 8 8 2", 
                " 48 6 11 4 8 8 8 2", " 58 6 4 4 16 24 8 14", " 88* 6* 4 12 1 20 12 7",
                " 117 20 45 41 43 5 32 2", " 7036 526 7 1 1 8 71 6", " 101 43 41 15 18 11 7 6",
                " 3595 112 11 5 12 8 88 86", " 117 20 45 41 43 5 32 2", " 744 10 11 135 8 8 8 2"
                )), row.names = c(NA, -10L), class = c("tbl_df", "tbl", "data.frame"
                ))





                share|improve this answer




























                  0












                  0








                  0







                  You could use strsplit().



                  split <- do.call(rbind, strsplit(gsub("\*", "", df[, -1]), " "))[, -1]
                  df1 <- data.frame(df[, 1], split)
                  df1 <- lapply(df1, function(x) as.numeric(as.character(x)))
                  names(df1) <- unlist(strsplit(names(df), split = ".", fixed=TRUE))

                  > df1
                  header ST adk fumC gyrB icd mdh purA recA
                  1 1 10 10 11 4 8 8 8 2
                  2 2 48 6 11 4 8 8 8 2
                  3 3 58 6 4 4 16 24 8 14
                  4 4 88 6 4 12 1 20 12 7
                  5 5 117 20 45 41 43 5 32 2
                  6 6 7036 526 7 1 1 8 71 6
                  7 7 101 43 41 15 18 11 7 6
                  8 8 3595 112 11 5 12 8 88 86
                  9 9 117 20 45 41 43 5 32 2
                  10 10 744 10 11 135 8 8 8 2


                  Data



                  df <-structure(list(header = 1:10, ST.adk.fumC.gyrB.icd.mdh.purA.recA = c(" 10 10 11 4 8 8 8 2", 
                  " 48 6 11 4 8 8 8 2", " 58 6 4 4 16 24 8 14", " 88* 6* 4 12 1 20 12 7",
                  " 117 20 45 41 43 5 32 2", " 7036 526 7 1 1 8 71 6", " 101 43 41 15 18 11 7 6",
                  " 3595 112 11 5 12 8 88 86", " 117 20 45 41 43 5 32 2", " 744 10 11 135 8 8 8 2"
                  )), row.names = c(NA, -10L), class = c("tbl_df", "tbl", "data.frame"
                  ))





                  share|improve this answer















                  You could use strsplit().



                  split <- do.call(rbind, strsplit(gsub("\*", "", df[, -1]), " "))[, -1]
                  df1 <- data.frame(df[, 1], split)
                  df1 <- lapply(df1, function(x) as.numeric(as.character(x)))
                  names(df1) <- unlist(strsplit(names(df), split = ".", fixed=TRUE))

                  > df1
                  header ST adk fumC gyrB icd mdh purA recA
                  1 1 10 10 11 4 8 8 8 2
                  2 2 48 6 11 4 8 8 8 2
                  3 3 58 6 4 4 16 24 8 14
                  4 4 88 6 4 12 1 20 12 7
                  5 5 117 20 45 41 43 5 32 2
                  6 6 7036 526 7 1 1 8 71 6
                  7 7 101 43 41 15 18 11 7 6
                  8 8 3595 112 11 5 12 8 88 86
                  9 9 117 20 45 41 43 5 32 2
                  10 10 744 10 11 135 8 8 8 2


                  Data



                  df <-structure(list(header = 1:10, ST.adk.fumC.gyrB.icd.mdh.purA.recA = c(" 10 10 11 4 8 8 8 2", 
                  " 48 6 11 4 8 8 8 2", " 58 6 4 4 16 24 8 14", " 88* 6* 4 12 1 20 12 7",
                  " 117 20 45 41 43 5 32 2", " 7036 526 7 1 1 8 71 6", " 101 43 41 15 18 11 7 6",
                  " 3595 112 11 5 12 8 88 86", " 117 20 45 41 43 5 32 2", " 744 10 11 135 8 8 8 2"
                  )), row.names = c(NA, -10L), class = c("tbl_df", "tbl", "data.frame"
                  ))






                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited Nov 25 '18 at 8:40

























                  answered Nov 24 '18 at 11:05









                  jay.sfjay.sf

                  4,83021539




                  4,83021539






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Stack Overflow!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53446945%2fseparate-column-with-unknown-name%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      404 Error Contact Form 7 ajax form submitting

                      How to know if a Active Directory user can login interactively

                      Refactoring coordinates for Minecraft Pi buildings written in Python