plot a 3d plot using dataframe in matplotlib
I have following data and i am having trouble plotting a 3d Plot similar to the one showed in the examples of Matplotlib -> https://matplotlib.org/examples/mplot3d/custom_shaded_3d_surface.html
On the x axis i want to have the Residue column, on the y-axis the first row and the z axis should represent the values.
residue 0 1 2 3 4 5 6
0 0.0 0.0 1.671928 1.441439 0.808492 1.079337 1.186970 1.445275
1 1.0 0.0 1.348867 1.216174 1.324360 1.965453 2.121130 1.713321
2 2.0 0.0 1.281589 0.794236 1.083470 1.476939 2.011159 2.360246
3 3.0 0.0 0.798151 0.993858 1.020617 0.829792 1.280412 1.653299
4 4.0 0.0 0.789995 1.194215 1.407934 1.291384 1.555449 1.258266
5 5.0 0.0 0.653958 0.910582 1.585495 1.245847 1.620384 1.664490
6 6.0 0.0 0.782577 0.648373 1.284292 1.087762 1.523729 1.631152
7 7.0 0.0 1.094054 1.127248 0.958693 1.168483 0.897470 1.404080
8 8.0 0.0 0.433993 1.165169 0.925521 1.292363 1.075700 1.146139
9 9.0 0.0 1.114398 0.963963 1.062597 1.297358 1.412016 1.422071
10 10.0 0.0 0.706276 1.056272 1.381639 1.682080 1.779487 1.914487
11 11.0 0.0 1.059623 1.000653 1.152697 1.895022 1.562730 1.964862
Is it better not to use a Dataframe in this case?
this is the code im using:
z = df.iloc[1:,1:-1]
ff= [i for i in range(1,500)]
y=df["residue"]
print(len(z))
nrows, ncols = z.shape
x = np.linspace(min(ff),max(ff), ncols)
x, y = np.meshgrid(x, y)
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
plt.show()
python pandas matplotlib plot
add a comment |
I have following data and i am having trouble plotting a 3d Plot similar to the one showed in the examples of Matplotlib -> https://matplotlib.org/examples/mplot3d/custom_shaded_3d_surface.html
On the x axis i want to have the Residue column, on the y-axis the first row and the z axis should represent the values.
residue 0 1 2 3 4 5 6
0 0.0 0.0 1.671928 1.441439 0.808492 1.079337 1.186970 1.445275
1 1.0 0.0 1.348867 1.216174 1.324360 1.965453 2.121130 1.713321
2 2.0 0.0 1.281589 0.794236 1.083470 1.476939 2.011159 2.360246
3 3.0 0.0 0.798151 0.993858 1.020617 0.829792 1.280412 1.653299
4 4.0 0.0 0.789995 1.194215 1.407934 1.291384 1.555449 1.258266
5 5.0 0.0 0.653958 0.910582 1.585495 1.245847 1.620384 1.664490
6 6.0 0.0 0.782577 0.648373 1.284292 1.087762 1.523729 1.631152
7 7.0 0.0 1.094054 1.127248 0.958693 1.168483 0.897470 1.404080
8 8.0 0.0 0.433993 1.165169 0.925521 1.292363 1.075700 1.146139
9 9.0 0.0 1.114398 0.963963 1.062597 1.297358 1.412016 1.422071
10 10.0 0.0 0.706276 1.056272 1.381639 1.682080 1.779487 1.914487
11 11.0 0.0 1.059623 1.000653 1.152697 1.895022 1.562730 1.964862
Is it better not to use a Dataframe in this case?
this is the code im using:
z = df.iloc[1:,1:-1]
ff= [i for i in range(1,500)]
y=df["residue"]
print(len(z))
nrows, ncols = z.shape
x = np.linspace(min(ff),max(ff), ncols)
x, y = np.meshgrid(x, y)
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
plt.show()
python pandas matplotlib plot
You can sure use a dataframe. One problem is thatresidue
is a column of the frame, so it would be included in the data. however, you would rather make it the dateframe index. Then you will need to create a meshgrid of the index and columns as shown in the many examples on this topic.
– ImportanceOfBeingErnest
Nov 25 '18 at 16:38
add a comment |
I have following data and i am having trouble plotting a 3d Plot similar to the one showed in the examples of Matplotlib -> https://matplotlib.org/examples/mplot3d/custom_shaded_3d_surface.html
On the x axis i want to have the Residue column, on the y-axis the first row and the z axis should represent the values.
residue 0 1 2 3 4 5 6
0 0.0 0.0 1.671928 1.441439 0.808492 1.079337 1.186970 1.445275
1 1.0 0.0 1.348867 1.216174 1.324360 1.965453 2.121130 1.713321
2 2.0 0.0 1.281589 0.794236 1.083470 1.476939 2.011159 2.360246
3 3.0 0.0 0.798151 0.993858 1.020617 0.829792 1.280412 1.653299
4 4.0 0.0 0.789995 1.194215 1.407934 1.291384 1.555449 1.258266
5 5.0 0.0 0.653958 0.910582 1.585495 1.245847 1.620384 1.664490
6 6.0 0.0 0.782577 0.648373 1.284292 1.087762 1.523729 1.631152
7 7.0 0.0 1.094054 1.127248 0.958693 1.168483 0.897470 1.404080
8 8.0 0.0 0.433993 1.165169 0.925521 1.292363 1.075700 1.146139
9 9.0 0.0 1.114398 0.963963 1.062597 1.297358 1.412016 1.422071
10 10.0 0.0 0.706276 1.056272 1.381639 1.682080 1.779487 1.914487
11 11.0 0.0 1.059623 1.000653 1.152697 1.895022 1.562730 1.964862
Is it better not to use a Dataframe in this case?
this is the code im using:
z = df.iloc[1:,1:-1]
ff= [i for i in range(1,500)]
y=df["residue"]
print(len(z))
nrows, ncols = z.shape
x = np.linspace(min(ff),max(ff), ncols)
x, y = np.meshgrid(x, y)
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
plt.show()
python pandas matplotlib plot
I have following data and i am having trouble plotting a 3d Plot similar to the one showed in the examples of Matplotlib -> https://matplotlib.org/examples/mplot3d/custom_shaded_3d_surface.html
On the x axis i want to have the Residue column, on the y-axis the first row and the z axis should represent the values.
residue 0 1 2 3 4 5 6
0 0.0 0.0 1.671928 1.441439 0.808492 1.079337 1.186970 1.445275
1 1.0 0.0 1.348867 1.216174 1.324360 1.965453 2.121130 1.713321
2 2.0 0.0 1.281589 0.794236 1.083470 1.476939 2.011159 2.360246
3 3.0 0.0 0.798151 0.993858 1.020617 0.829792 1.280412 1.653299
4 4.0 0.0 0.789995 1.194215 1.407934 1.291384 1.555449 1.258266
5 5.0 0.0 0.653958 0.910582 1.585495 1.245847 1.620384 1.664490
6 6.0 0.0 0.782577 0.648373 1.284292 1.087762 1.523729 1.631152
7 7.0 0.0 1.094054 1.127248 0.958693 1.168483 0.897470 1.404080
8 8.0 0.0 0.433993 1.165169 0.925521 1.292363 1.075700 1.146139
9 9.0 0.0 1.114398 0.963963 1.062597 1.297358 1.412016 1.422071
10 10.0 0.0 0.706276 1.056272 1.381639 1.682080 1.779487 1.914487
11 11.0 0.0 1.059623 1.000653 1.152697 1.895022 1.562730 1.964862
Is it better not to use a Dataframe in this case?
this is the code im using:
z = df.iloc[1:,1:-1]
ff= [i for i in range(1,500)]
y=df["residue"]
print(len(z))
nrows, ncols = z.shape
x = np.linspace(min(ff),max(ff), ncols)
x, y = np.meshgrid(x, y)
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
plt.show()
python pandas matplotlib plot
python pandas matplotlib plot
edited Nov 25 '18 at 16:40
Amir
asked Nov 25 '18 at 16:34
AmirAmir
113
113
You can sure use a dataframe. One problem is thatresidue
is a column of the frame, so it would be included in the data. however, you would rather make it the dateframe index. Then you will need to create a meshgrid of the index and columns as shown in the many examples on this topic.
– ImportanceOfBeingErnest
Nov 25 '18 at 16:38
add a comment |
You can sure use a dataframe. One problem is thatresidue
is a column of the frame, so it would be included in the data. however, you would rather make it the dateframe index. Then you will need to create a meshgrid of the index and columns as shown in the many examples on this topic.
– ImportanceOfBeingErnest
Nov 25 '18 at 16:38
You can sure use a dataframe. One problem is that
residue
is a column of the frame, so it would be included in the data. however, you would rather make it the dateframe index. Then you will need to create a meshgrid of the index and columns as shown in the many examples on this topic.– ImportanceOfBeingErnest
Nov 25 '18 at 16:38
You can sure use a dataframe. One problem is that
residue
is a column of the frame, so it would be included in the data. however, you would rather make it the dateframe index. Then you will need to create a meshgrid of the index and columns as shown in the many examples on this topic.– ImportanceOfBeingErnest
Nov 25 '18 at 16:38
add a comment |
1 Answer
1
active
oldest
votes
u = """ residue 0 1 2 3 4 5 6
0 0.0 0.0 1.671928 1.441439 0.808492 1.079337 1.186970 1.445275
1 1.0 0.0 1.348867 1.216174 1.324360 1.965453 2.121130 1.713321
2 2.0 0.0 1.281589 0.794236 1.083470 1.476939 2.011159 2.360246
3 3.0 0.0 0.798151 0.993858 1.020617 0.829792 1.280412 1.653299
4 4.0 0.0 0.789995 1.194215 1.407934 1.291384 1.555449 1.258266
5 5.0 0.0 0.653958 0.910582 1.585495 1.245847 1.620384 1.664490
6 6.0 0.0 0.782577 0.648373 1.284292 1.087762 1.523729 1.631152
7 7.0 0.0 1.094054 1.127248 0.958693 1.168483 0.897470 1.404080
8 8.0 0.0 0.433993 1.165169 0.925521 1.292363 1.075700 1.146139
9 9.0 0.0 1.114398 0.963963 1.062597 1.297358 1.412016 1.422071
10 10.0 0.0 0.706276 1.056272 1.381639 1.682080 1.779487 1.914487
11 11.0 0.0 1.059623 1.000653 1.152697 1.895022 1.562730 1.964862"""
import io
import pandas as pd
import numpy as np
df = pd.read_csv(io.StringIO(u), delim_whitespace=True)
df = df.set_index("residue")
Setting such that the residue
column is not part of the data anymore.
Then you can create the meshgrid from the columns and the index and plot it according to the linked example.
x,y = np.meshgrid(df.columns.astype(float), df.index)
z = df.values
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.colors import LightSource
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
rgb = LightSource(270, 45).shade(z, cmap=plt.cm.gist_earth, vert_exag=0.1, blend_mode='soft')
surf = ax.plot_surface(x, y, z, facecolors=rgb,
linewidth=0, antialiased=False, shade=False)
plt.show()
thank you very much that was exactly what i was looking for, the df.value. I actually added the column name 8residue, 1 ,2,3, etc. manually but apperently it wasnt a smart strategy.
– Amir
Nov 25 '18 at 21:25
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53469589%2fplot-a-3d-plot-using-dataframe-in-matplotlib%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
u = """ residue 0 1 2 3 4 5 6
0 0.0 0.0 1.671928 1.441439 0.808492 1.079337 1.186970 1.445275
1 1.0 0.0 1.348867 1.216174 1.324360 1.965453 2.121130 1.713321
2 2.0 0.0 1.281589 0.794236 1.083470 1.476939 2.011159 2.360246
3 3.0 0.0 0.798151 0.993858 1.020617 0.829792 1.280412 1.653299
4 4.0 0.0 0.789995 1.194215 1.407934 1.291384 1.555449 1.258266
5 5.0 0.0 0.653958 0.910582 1.585495 1.245847 1.620384 1.664490
6 6.0 0.0 0.782577 0.648373 1.284292 1.087762 1.523729 1.631152
7 7.0 0.0 1.094054 1.127248 0.958693 1.168483 0.897470 1.404080
8 8.0 0.0 0.433993 1.165169 0.925521 1.292363 1.075700 1.146139
9 9.0 0.0 1.114398 0.963963 1.062597 1.297358 1.412016 1.422071
10 10.0 0.0 0.706276 1.056272 1.381639 1.682080 1.779487 1.914487
11 11.0 0.0 1.059623 1.000653 1.152697 1.895022 1.562730 1.964862"""
import io
import pandas as pd
import numpy as np
df = pd.read_csv(io.StringIO(u), delim_whitespace=True)
df = df.set_index("residue")
Setting such that the residue
column is not part of the data anymore.
Then you can create the meshgrid from the columns and the index and plot it according to the linked example.
x,y = np.meshgrid(df.columns.astype(float), df.index)
z = df.values
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.colors import LightSource
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
rgb = LightSource(270, 45).shade(z, cmap=plt.cm.gist_earth, vert_exag=0.1, blend_mode='soft')
surf = ax.plot_surface(x, y, z, facecolors=rgb,
linewidth=0, antialiased=False, shade=False)
plt.show()
thank you very much that was exactly what i was looking for, the df.value. I actually added the column name 8residue, 1 ,2,3, etc. manually but apperently it wasnt a smart strategy.
– Amir
Nov 25 '18 at 21:25
add a comment |
u = """ residue 0 1 2 3 4 5 6
0 0.0 0.0 1.671928 1.441439 0.808492 1.079337 1.186970 1.445275
1 1.0 0.0 1.348867 1.216174 1.324360 1.965453 2.121130 1.713321
2 2.0 0.0 1.281589 0.794236 1.083470 1.476939 2.011159 2.360246
3 3.0 0.0 0.798151 0.993858 1.020617 0.829792 1.280412 1.653299
4 4.0 0.0 0.789995 1.194215 1.407934 1.291384 1.555449 1.258266
5 5.0 0.0 0.653958 0.910582 1.585495 1.245847 1.620384 1.664490
6 6.0 0.0 0.782577 0.648373 1.284292 1.087762 1.523729 1.631152
7 7.0 0.0 1.094054 1.127248 0.958693 1.168483 0.897470 1.404080
8 8.0 0.0 0.433993 1.165169 0.925521 1.292363 1.075700 1.146139
9 9.0 0.0 1.114398 0.963963 1.062597 1.297358 1.412016 1.422071
10 10.0 0.0 0.706276 1.056272 1.381639 1.682080 1.779487 1.914487
11 11.0 0.0 1.059623 1.000653 1.152697 1.895022 1.562730 1.964862"""
import io
import pandas as pd
import numpy as np
df = pd.read_csv(io.StringIO(u), delim_whitespace=True)
df = df.set_index("residue")
Setting such that the residue
column is not part of the data anymore.
Then you can create the meshgrid from the columns and the index and plot it according to the linked example.
x,y = np.meshgrid(df.columns.astype(float), df.index)
z = df.values
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.colors import LightSource
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
rgb = LightSource(270, 45).shade(z, cmap=plt.cm.gist_earth, vert_exag=0.1, blend_mode='soft')
surf = ax.plot_surface(x, y, z, facecolors=rgb,
linewidth=0, antialiased=False, shade=False)
plt.show()
thank you very much that was exactly what i was looking for, the df.value. I actually added the column name 8residue, 1 ,2,3, etc. manually but apperently it wasnt a smart strategy.
– Amir
Nov 25 '18 at 21:25
add a comment |
u = """ residue 0 1 2 3 4 5 6
0 0.0 0.0 1.671928 1.441439 0.808492 1.079337 1.186970 1.445275
1 1.0 0.0 1.348867 1.216174 1.324360 1.965453 2.121130 1.713321
2 2.0 0.0 1.281589 0.794236 1.083470 1.476939 2.011159 2.360246
3 3.0 0.0 0.798151 0.993858 1.020617 0.829792 1.280412 1.653299
4 4.0 0.0 0.789995 1.194215 1.407934 1.291384 1.555449 1.258266
5 5.0 0.0 0.653958 0.910582 1.585495 1.245847 1.620384 1.664490
6 6.0 0.0 0.782577 0.648373 1.284292 1.087762 1.523729 1.631152
7 7.0 0.0 1.094054 1.127248 0.958693 1.168483 0.897470 1.404080
8 8.0 0.0 0.433993 1.165169 0.925521 1.292363 1.075700 1.146139
9 9.0 0.0 1.114398 0.963963 1.062597 1.297358 1.412016 1.422071
10 10.0 0.0 0.706276 1.056272 1.381639 1.682080 1.779487 1.914487
11 11.0 0.0 1.059623 1.000653 1.152697 1.895022 1.562730 1.964862"""
import io
import pandas as pd
import numpy as np
df = pd.read_csv(io.StringIO(u), delim_whitespace=True)
df = df.set_index("residue")
Setting such that the residue
column is not part of the data anymore.
Then you can create the meshgrid from the columns and the index and plot it according to the linked example.
x,y = np.meshgrid(df.columns.astype(float), df.index)
z = df.values
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.colors import LightSource
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
rgb = LightSource(270, 45).shade(z, cmap=plt.cm.gist_earth, vert_exag=0.1, blend_mode='soft')
surf = ax.plot_surface(x, y, z, facecolors=rgb,
linewidth=0, antialiased=False, shade=False)
plt.show()
u = """ residue 0 1 2 3 4 5 6
0 0.0 0.0 1.671928 1.441439 0.808492 1.079337 1.186970 1.445275
1 1.0 0.0 1.348867 1.216174 1.324360 1.965453 2.121130 1.713321
2 2.0 0.0 1.281589 0.794236 1.083470 1.476939 2.011159 2.360246
3 3.0 0.0 0.798151 0.993858 1.020617 0.829792 1.280412 1.653299
4 4.0 0.0 0.789995 1.194215 1.407934 1.291384 1.555449 1.258266
5 5.0 0.0 0.653958 0.910582 1.585495 1.245847 1.620384 1.664490
6 6.0 0.0 0.782577 0.648373 1.284292 1.087762 1.523729 1.631152
7 7.0 0.0 1.094054 1.127248 0.958693 1.168483 0.897470 1.404080
8 8.0 0.0 0.433993 1.165169 0.925521 1.292363 1.075700 1.146139
9 9.0 0.0 1.114398 0.963963 1.062597 1.297358 1.412016 1.422071
10 10.0 0.0 0.706276 1.056272 1.381639 1.682080 1.779487 1.914487
11 11.0 0.0 1.059623 1.000653 1.152697 1.895022 1.562730 1.964862"""
import io
import pandas as pd
import numpy as np
df = pd.read_csv(io.StringIO(u), delim_whitespace=True)
df = df.set_index("residue")
Setting such that the residue
column is not part of the data anymore.
Then you can create the meshgrid from the columns and the index and plot it according to the linked example.
x,y = np.meshgrid(df.columns.astype(float), df.index)
z = df.values
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.colors import LightSource
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
rgb = LightSource(270, 45).shade(z, cmap=plt.cm.gist_earth, vert_exag=0.1, blend_mode='soft')
surf = ax.plot_surface(x, y, z, facecolors=rgb,
linewidth=0, antialiased=False, shade=False)
plt.show()
answered Nov 25 '18 at 17:11
ImportanceOfBeingErnestImportanceOfBeingErnest
135k13151226
135k13151226
thank you very much that was exactly what i was looking for, the df.value. I actually added the column name 8residue, 1 ,2,3, etc. manually but apperently it wasnt a smart strategy.
– Amir
Nov 25 '18 at 21:25
add a comment |
thank you very much that was exactly what i was looking for, the df.value. I actually added the column name 8residue, 1 ,2,3, etc. manually but apperently it wasnt a smart strategy.
– Amir
Nov 25 '18 at 21:25
thank you very much that was exactly what i was looking for, the df.value. I actually added the column name 8residue, 1 ,2,3, etc. manually but apperently it wasnt a smart strategy.
– Amir
Nov 25 '18 at 21:25
thank you very much that was exactly what i was looking for, the df.value. I actually added the column name 8residue, 1 ,2,3, etc. manually but apperently it wasnt a smart strategy.
– Amir
Nov 25 '18 at 21:25
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53469589%2fplot-a-3d-plot-using-dataframe-in-matplotlib%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
You can sure use a dataframe. One problem is that
residue
is a column of the frame, so it would be included in the data. however, you would rather make it the dateframe index. Then you will need to create a meshgrid of the index and columns as shown in the many examples on this topic.– ImportanceOfBeingErnest
Nov 25 '18 at 16:38