How to use JohnSnowLabs NLP Spell correction module NorvigSweetingModel?












0














I was going through the JohnSnowLabs SpellChecker here.



I found the Norvig's algorithm implementation there, and the example section has just the following two lines:



import com.johnsnowlabs.nlp.annotator.NorvigSweetingModel
NorvigSweetingModel.pretrained()


Can anyone please help me on how to apply this pretrained model on my dataframe (df)below for spell correcting the "names" column.



+----------------+---+------------+
| names|age| color|
+----------------+---+------------+
| [abc, cde]| 19| red, abc|
|[eefg, efa, efb]|192|efg, efz efz|
+----------------+---+------------+


I have tried to do it as follows:



val schk = NorvigSweetingModel.pretrained().setInputCols("names").setOutputCol("Corrected")

val cdf = schk.transform(df)


But the above code gave me the following error:



java.lang.IllegalArgumentException: requirement failed: Wrong or missing inputCols annotators in SPELL_a1f11bacb851. Received inputCols: names. Make sure such columns have following annotator types: token
at scala.Predef$.require(Predef.scala:224)
at com.johnsnowlabs.nlp.AnnotatorModel.transform(AnnotatorModel.scala:51)
... 49 elided


Thanks.










share|improve this question





























    0














    I was going through the JohnSnowLabs SpellChecker here.



    I found the Norvig's algorithm implementation there, and the example section has just the following two lines:



    import com.johnsnowlabs.nlp.annotator.NorvigSweetingModel
    NorvigSweetingModel.pretrained()


    Can anyone please help me on how to apply this pretrained model on my dataframe (df)below for spell correcting the "names" column.



    +----------------+---+------------+
    | names|age| color|
    +----------------+---+------------+
    | [abc, cde]| 19| red, abc|
    |[eefg, efa, efb]|192|efg, efz efz|
    +----------------+---+------------+


    I have tried to do it as follows:



    val schk = NorvigSweetingModel.pretrained().setInputCols("names").setOutputCol("Corrected")

    val cdf = schk.transform(df)


    But the above code gave me the following error:



    java.lang.IllegalArgumentException: requirement failed: Wrong or missing inputCols annotators in SPELL_a1f11bacb851. Received inputCols: names. Make sure such columns have following annotator types: token
    at scala.Predef$.require(Predef.scala:224)
    at com.johnsnowlabs.nlp.AnnotatorModel.transform(AnnotatorModel.scala:51)
    ... 49 elided


    Thanks.










    share|improve this question



























      0












      0








      0







      I was going through the JohnSnowLabs SpellChecker here.



      I found the Norvig's algorithm implementation there, and the example section has just the following two lines:



      import com.johnsnowlabs.nlp.annotator.NorvigSweetingModel
      NorvigSweetingModel.pretrained()


      Can anyone please help me on how to apply this pretrained model on my dataframe (df)below for spell correcting the "names" column.



      +----------------+---+------------+
      | names|age| color|
      +----------------+---+------------+
      | [abc, cde]| 19| red, abc|
      |[eefg, efa, efb]|192|efg, efz efz|
      +----------------+---+------------+


      I have tried to do it as follows:



      val schk = NorvigSweetingModel.pretrained().setInputCols("names").setOutputCol("Corrected")

      val cdf = schk.transform(df)


      But the above code gave me the following error:



      java.lang.IllegalArgumentException: requirement failed: Wrong or missing inputCols annotators in SPELL_a1f11bacb851. Received inputCols: names. Make sure such columns have following annotator types: token
      at scala.Predef$.require(Predef.scala:224)
      at com.johnsnowlabs.nlp.AnnotatorModel.transform(AnnotatorModel.scala:51)
      ... 49 elided


      Thanks.










      share|improve this question















      I was going through the JohnSnowLabs SpellChecker here.



      I found the Norvig's algorithm implementation there, and the example section has just the following two lines:



      import com.johnsnowlabs.nlp.annotator.NorvigSweetingModel
      NorvigSweetingModel.pretrained()


      Can anyone please help me on how to apply this pretrained model on my dataframe (df)below for spell correcting the "names" column.



      +----------------+---+------------+
      | names|age| color|
      +----------------+---+------------+
      | [abc, cde]| 19| red, abc|
      |[eefg, efa, efb]|192|efg, efz efz|
      +----------------+---+------------+


      I have tried to do it as follows:



      val schk = NorvigSweetingModel.pretrained().setInputCols("names").setOutputCol("Corrected")

      val cdf = schk.transform(df)


      But the above code gave me the following error:



      java.lang.IllegalArgumentException: requirement failed: Wrong or missing inputCols annotators in SPELL_a1f11bacb851. Received inputCols: names. Make sure such columns have following annotator types: token
      at scala.Predef$.require(Predef.scala:224)
      at com.johnsnowlabs.nlp.AnnotatorModel.transform(AnnotatorModel.scala:51)
      ... 49 elided


      Thanks.







      scala apache-spark nlp apache-spark-ml johnsnowlabs-spark-nlp






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 28 '18 at 5:13









      Community

      11




      11










      asked Nov 21 '18 at 18:15









      user3243499user3243499

      74611126




      74611126
























          1 Answer
          1






          active

          oldest

          votes


















          1














          spark-nlp are designed to be used in its own specific pipelines and input columns for different transformers have to include special metadata.



          The exception already tells you that input to the NorvigSweetingModel should be tokenized:




          Make sure such columns have following annotator types: token




          If I am not mistaken, at minimum you'll have assemble documents and tokenized here.



          import com.johnsnowlabs.nlp.DocumentAssembler
          import com.johnsnowlabs.nlp.annotator.NorvigSweetingModel
          import com.johnsnowlabs.nlp.annotators.Tokenizer
          import org.apache.spark.ml.Pipeline

          val df = Seq(Seq("abc", "cde"), Seq("eefg", "efa", "efb")).toDF("names")

          val nlpPipeline = new Pipeline().setStages(Array(
          new DocumentAssembler().setInputCol("names").setOutputCol("document"),
          new Tokenizer().setInputCols("document").setOutputCol("tokens"),
          NorvigSweetingModel.pretrained().setInputCols("tokens").setOutputCol("corrected")
          ))


          A Pipeline like this, can be applied on your data with small adjustment - input data has to be string not array<string>*:



          val result = df
          .transform(_.withColumn("names", concat_ws(" ", $"names")))
          .transform(df => nlpPipeline.fit(df).transform(df))
          result.show()




          +------------+--------------------+--------------------+--------------------+
          | names| document| tokens| corrected|
          +------------+--------------------+--------------------+--------------------+
          | abc cde|[[document, 0, 6,...|[[token, 0, 2, ab...|[[token, 0, 2, ab...|
          |eefg efa efb|[[document, 0, 11...|[[token, 0, 3, ee...|[[token, 0, 3, ee...|
          +------------+--------------------+--------------------+--------------------+


          If you want an output that can be exported you should extend your Pipeline with Finisher.



          import com.johnsnowlabs.nlp.Finisher

          new Finisher().setInputCols("corrected").transform(result).show




           +------------+------------------+
          | names|finished_corrected|
          +------------+------------------+
          | abc cde| [abc, cde]|
          |eefg efa efb| [eefg, efa, efb]|
          +------------+------------------+




          * According to the docs DocumentAssembler




          can read either a String column or an Array[String]




          but it doesn't look like it works in practice in 1.7.3:



          df.transform(df => nlpPipeline.fit(df).transform(df)).show()




          org.apache.spark.sql.AnalysisException: cannot resolve 'UDF(names)' due to data type mismatch: argument 1 requires string type, however, '`names`' is of array<string> type.;;
          'Project [names#62, UDF(names#62) AS document#343]
          +- AnalysisBarrier
          +- Project [value#60 AS names#62]
          +- LocalRelation [value#60]





          share|improve this answer























          • How to get the spell corrected values. Values under "corrected" comes as [[token, 0, 3, eefg, [sentence -> 1]], [token, 5, 7, efa, [sentence -> 1]], [token, 9, 11, efb, [sentence -> 1]]]
            – user3243499
            Nov 21 '18 at 19:21










          • Does each of this list items, like [sentence ->1], have any standard structure/meaning?
            – user3243499
            Nov 21 '18 at 19:23










          • @user3243499 How to get the spell corrected values - Please check the Finisher part.
            – user10465355
            Nov 21 '18 at 20:18










          • Does each of this list items, like [sentence ->1], have any standard structure/meaning? - it is metadata. It is map<string,string> so structure is not fixed, but in this case it contains information about the sentence form the document.
            – user10465355
            Nov 21 '18 at 20:21











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53418267%2fhow-to-use-johnsnowlabs-nlp-spell-correction-module-norvigsweetingmodel%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1














          spark-nlp are designed to be used in its own specific pipelines and input columns for different transformers have to include special metadata.



          The exception already tells you that input to the NorvigSweetingModel should be tokenized:




          Make sure such columns have following annotator types: token




          If I am not mistaken, at minimum you'll have assemble documents and tokenized here.



          import com.johnsnowlabs.nlp.DocumentAssembler
          import com.johnsnowlabs.nlp.annotator.NorvigSweetingModel
          import com.johnsnowlabs.nlp.annotators.Tokenizer
          import org.apache.spark.ml.Pipeline

          val df = Seq(Seq("abc", "cde"), Seq("eefg", "efa", "efb")).toDF("names")

          val nlpPipeline = new Pipeline().setStages(Array(
          new DocumentAssembler().setInputCol("names").setOutputCol("document"),
          new Tokenizer().setInputCols("document").setOutputCol("tokens"),
          NorvigSweetingModel.pretrained().setInputCols("tokens").setOutputCol("corrected")
          ))


          A Pipeline like this, can be applied on your data with small adjustment - input data has to be string not array<string>*:



          val result = df
          .transform(_.withColumn("names", concat_ws(" ", $"names")))
          .transform(df => nlpPipeline.fit(df).transform(df))
          result.show()




          +------------+--------------------+--------------------+--------------------+
          | names| document| tokens| corrected|
          +------------+--------------------+--------------------+--------------------+
          | abc cde|[[document, 0, 6,...|[[token, 0, 2, ab...|[[token, 0, 2, ab...|
          |eefg efa efb|[[document, 0, 11...|[[token, 0, 3, ee...|[[token, 0, 3, ee...|
          +------------+--------------------+--------------------+--------------------+


          If you want an output that can be exported you should extend your Pipeline with Finisher.



          import com.johnsnowlabs.nlp.Finisher

          new Finisher().setInputCols("corrected").transform(result).show




           +------------+------------------+
          | names|finished_corrected|
          +------------+------------------+
          | abc cde| [abc, cde]|
          |eefg efa efb| [eefg, efa, efb]|
          +------------+------------------+




          * According to the docs DocumentAssembler




          can read either a String column or an Array[String]




          but it doesn't look like it works in practice in 1.7.3:



          df.transform(df => nlpPipeline.fit(df).transform(df)).show()




          org.apache.spark.sql.AnalysisException: cannot resolve 'UDF(names)' due to data type mismatch: argument 1 requires string type, however, '`names`' is of array<string> type.;;
          'Project [names#62, UDF(names#62) AS document#343]
          +- AnalysisBarrier
          +- Project [value#60 AS names#62]
          +- LocalRelation [value#60]





          share|improve this answer























          • How to get the spell corrected values. Values under "corrected" comes as [[token, 0, 3, eefg, [sentence -> 1]], [token, 5, 7, efa, [sentence -> 1]], [token, 9, 11, efb, [sentence -> 1]]]
            – user3243499
            Nov 21 '18 at 19:21










          • Does each of this list items, like [sentence ->1], have any standard structure/meaning?
            – user3243499
            Nov 21 '18 at 19:23










          • @user3243499 How to get the spell corrected values - Please check the Finisher part.
            – user10465355
            Nov 21 '18 at 20:18










          • Does each of this list items, like [sentence ->1], have any standard structure/meaning? - it is metadata. It is map<string,string> so structure is not fixed, but in this case it contains information about the sentence form the document.
            – user10465355
            Nov 21 '18 at 20:21
















          1














          spark-nlp are designed to be used in its own specific pipelines and input columns for different transformers have to include special metadata.



          The exception already tells you that input to the NorvigSweetingModel should be tokenized:




          Make sure such columns have following annotator types: token




          If I am not mistaken, at minimum you'll have assemble documents and tokenized here.



          import com.johnsnowlabs.nlp.DocumentAssembler
          import com.johnsnowlabs.nlp.annotator.NorvigSweetingModel
          import com.johnsnowlabs.nlp.annotators.Tokenizer
          import org.apache.spark.ml.Pipeline

          val df = Seq(Seq("abc", "cde"), Seq("eefg", "efa", "efb")).toDF("names")

          val nlpPipeline = new Pipeline().setStages(Array(
          new DocumentAssembler().setInputCol("names").setOutputCol("document"),
          new Tokenizer().setInputCols("document").setOutputCol("tokens"),
          NorvigSweetingModel.pretrained().setInputCols("tokens").setOutputCol("corrected")
          ))


          A Pipeline like this, can be applied on your data with small adjustment - input data has to be string not array<string>*:



          val result = df
          .transform(_.withColumn("names", concat_ws(" ", $"names")))
          .transform(df => nlpPipeline.fit(df).transform(df))
          result.show()




          +------------+--------------------+--------------------+--------------------+
          | names| document| tokens| corrected|
          +------------+--------------------+--------------------+--------------------+
          | abc cde|[[document, 0, 6,...|[[token, 0, 2, ab...|[[token, 0, 2, ab...|
          |eefg efa efb|[[document, 0, 11...|[[token, 0, 3, ee...|[[token, 0, 3, ee...|
          +------------+--------------------+--------------------+--------------------+


          If you want an output that can be exported you should extend your Pipeline with Finisher.



          import com.johnsnowlabs.nlp.Finisher

          new Finisher().setInputCols("corrected").transform(result).show




           +------------+------------------+
          | names|finished_corrected|
          +------------+------------------+
          | abc cde| [abc, cde]|
          |eefg efa efb| [eefg, efa, efb]|
          +------------+------------------+




          * According to the docs DocumentAssembler




          can read either a String column or an Array[String]




          but it doesn't look like it works in practice in 1.7.3:



          df.transform(df => nlpPipeline.fit(df).transform(df)).show()




          org.apache.spark.sql.AnalysisException: cannot resolve 'UDF(names)' due to data type mismatch: argument 1 requires string type, however, '`names`' is of array<string> type.;;
          'Project [names#62, UDF(names#62) AS document#343]
          +- AnalysisBarrier
          +- Project [value#60 AS names#62]
          +- LocalRelation [value#60]





          share|improve this answer























          • How to get the spell corrected values. Values under "corrected" comes as [[token, 0, 3, eefg, [sentence -> 1]], [token, 5, 7, efa, [sentence -> 1]], [token, 9, 11, efb, [sentence -> 1]]]
            – user3243499
            Nov 21 '18 at 19:21










          • Does each of this list items, like [sentence ->1], have any standard structure/meaning?
            – user3243499
            Nov 21 '18 at 19:23










          • @user3243499 How to get the spell corrected values - Please check the Finisher part.
            – user10465355
            Nov 21 '18 at 20:18










          • Does each of this list items, like [sentence ->1], have any standard structure/meaning? - it is metadata. It is map<string,string> so structure is not fixed, but in this case it contains information about the sentence form the document.
            – user10465355
            Nov 21 '18 at 20:21














          1












          1








          1






          spark-nlp are designed to be used in its own specific pipelines and input columns for different transformers have to include special metadata.



          The exception already tells you that input to the NorvigSweetingModel should be tokenized:




          Make sure such columns have following annotator types: token




          If I am not mistaken, at minimum you'll have assemble documents and tokenized here.



          import com.johnsnowlabs.nlp.DocumentAssembler
          import com.johnsnowlabs.nlp.annotator.NorvigSweetingModel
          import com.johnsnowlabs.nlp.annotators.Tokenizer
          import org.apache.spark.ml.Pipeline

          val df = Seq(Seq("abc", "cde"), Seq("eefg", "efa", "efb")).toDF("names")

          val nlpPipeline = new Pipeline().setStages(Array(
          new DocumentAssembler().setInputCol("names").setOutputCol("document"),
          new Tokenizer().setInputCols("document").setOutputCol("tokens"),
          NorvigSweetingModel.pretrained().setInputCols("tokens").setOutputCol("corrected")
          ))


          A Pipeline like this, can be applied on your data with small adjustment - input data has to be string not array<string>*:



          val result = df
          .transform(_.withColumn("names", concat_ws(" ", $"names")))
          .transform(df => nlpPipeline.fit(df).transform(df))
          result.show()




          +------------+--------------------+--------------------+--------------------+
          | names| document| tokens| corrected|
          +------------+--------------------+--------------------+--------------------+
          | abc cde|[[document, 0, 6,...|[[token, 0, 2, ab...|[[token, 0, 2, ab...|
          |eefg efa efb|[[document, 0, 11...|[[token, 0, 3, ee...|[[token, 0, 3, ee...|
          +------------+--------------------+--------------------+--------------------+


          If you want an output that can be exported you should extend your Pipeline with Finisher.



          import com.johnsnowlabs.nlp.Finisher

          new Finisher().setInputCols("corrected").transform(result).show




           +------------+------------------+
          | names|finished_corrected|
          +------------+------------------+
          | abc cde| [abc, cde]|
          |eefg efa efb| [eefg, efa, efb]|
          +------------+------------------+




          * According to the docs DocumentAssembler




          can read either a String column or an Array[String]




          but it doesn't look like it works in practice in 1.7.3:



          df.transform(df => nlpPipeline.fit(df).transform(df)).show()




          org.apache.spark.sql.AnalysisException: cannot resolve 'UDF(names)' due to data type mismatch: argument 1 requires string type, however, '`names`' is of array<string> type.;;
          'Project [names#62, UDF(names#62) AS document#343]
          +- AnalysisBarrier
          +- Project [value#60 AS names#62]
          +- LocalRelation [value#60]





          share|improve this answer














          spark-nlp are designed to be used in its own specific pipelines and input columns for different transformers have to include special metadata.



          The exception already tells you that input to the NorvigSweetingModel should be tokenized:




          Make sure such columns have following annotator types: token




          If I am not mistaken, at minimum you'll have assemble documents and tokenized here.



          import com.johnsnowlabs.nlp.DocumentAssembler
          import com.johnsnowlabs.nlp.annotator.NorvigSweetingModel
          import com.johnsnowlabs.nlp.annotators.Tokenizer
          import org.apache.spark.ml.Pipeline

          val df = Seq(Seq("abc", "cde"), Seq("eefg", "efa", "efb")).toDF("names")

          val nlpPipeline = new Pipeline().setStages(Array(
          new DocumentAssembler().setInputCol("names").setOutputCol("document"),
          new Tokenizer().setInputCols("document").setOutputCol("tokens"),
          NorvigSweetingModel.pretrained().setInputCols("tokens").setOutputCol("corrected")
          ))


          A Pipeline like this, can be applied on your data with small adjustment - input data has to be string not array<string>*:



          val result = df
          .transform(_.withColumn("names", concat_ws(" ", $"names")))
          .transform(df => nlpPipeline.fit(df).transform(df))
          result.show()




          +------------+--------------------+--------------------+--------------------+
          | names| document| tokens| corrected|
          +------------+--------------------+--------------------+--------------------+
          | abc cde|[[document, 0, 6,...|[[token, 0, 2, ab...|[[token, 0, 2, ab...|
          |eefg efa efb|[[document, 0, 11...|[[token, 0, 3, ee...|[[token, 0, 3, ee...|
          +------------+--------------------+--------------------+--------------------+


          If you want an output that can be exported you should extend your Pipeline with Finisher.



          import com.johnsnowlabs.nlp.Finisher

          new Finisher().setInputCols("corrected").transform(result).show




           +------------+------------------+
          | names|finished_corrected|
          +------------+------------------+
          | abc cde| [abc, cde]|
          |eefg efa efb| [eefg, efa, efb]|
          +------------+------------------+




          * According to the docs DocumentAssembler




          can read either a String column or an Array[String]




          but it doesn't look like it works in practice in 1.7.3:



          df.transform(df => nlpPipeline.fit(df).transform(df)).show()




          org.apache.spark.sql.AnalysisException: cannot resolve 'UDF(names)' due to data type mismatch: argument 1 requires string type, however, '`names`' is of array<string> type.;;
          'Project [names#62, UDF(names#62) AS document#343]
          +- AnalysisBarrier
          +- Project [value#60 AS names#62]
          +- LocalRelation [value#60]






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Nov 21 '18 at 23:26

























          answered Nov 21 '18 at 19:04









          user10465355user10465355

          1,3781413




          1,3781413












          • How to get the spell corrected values. Values under "corrected" comes as [[token, 0, 3, eefg, [sentence -> 1]], [token, 5, 7, efa, [sentence -> 1]], [token, 9, 11, efb, [sentence -> 1]]]
            – user3243499
            Nov 21 '18 at 19:21










          • Does each of this list items, like [sentence ->1], have any standard structure/meaning?
            – user3243499
            Nov 21 '18 at 19:23










          • @user3243499 How to get the spell corrected values - Please check the Finisher part.
            – user10465355
            Nov 21 '18 at 20:18










          • Does each of this list items, like [sentence ->1], have any standard structure/meaning? - it is metadata. It is map<string,string> so structure is not fixed, but in this case it contains information about the sentence form the document.
            – user10465355
            Nov 21 '18 at 20:21


















          • How to get the spell corrected values. Values under "corrected" comes as [[token, 0, 3, eefg, [sentence -> 1]], [token, 5, 7, efa, [sentence -> 1]], [token, 9, 11, efb, [sentence -> 1]]]
            – user3243499
            Nov 21 '18 at 19:21










          • Does each of this list items, like [sentence ->1], have any standard structure/meaning?
            – user3243499
            Nov 21 '18 at 19:23










          • @user3243499 How to get the spell corrected values - Please check the Finisher part.
            – user10465355
            Nov 21 '18 at 20:18










          • Does each of this list items, like [sentence ->1], have any standard structure/meaning? - it is metadata. It is map<string,string> so structure is not fixed, but in this case it contains information about the sentence form the document.
            – user10465355
            Nov 21 '18 at 20:21
















          How to get the spell corrected values. Values under "corrected" comes as [[token, 0, 3, eefg, [sentence -> 1]], [token, 5, 7, efa, [sentence -> 1]], [token, 9, 11, efb, [sentence -> 1]]]
          – user3243499
          Nov 21 '18 at 19:21




          How to get the spell corrected values. Values under "corrected" comes as [[token, 0, 3, eefg, [sentence -> 1]], [token, 5, 7, efa, [sentence -> 1]], [token, 9, 11, efb, [sentence -> 1]]]
          – user3243499
          Nov 21 '18 at 19:21












          Does each of this list items, like [sentence ->1], have any standard structure/meaning?
          – user3243499
          Nov 21 '18 at 19:23




          Does each of this list items, like [sentence ->1], have any standard structure/meaning?
          – user3243499
          Nov 21 '18 at 19:23












          @user3243499 How to get the spell corrected values - Please check the Finisher part.
          – user10465355
          Nov 21 '18 at 20:18




          @user3243499 How to get the spell corrected values - Please check the Finisher part.
          – user10465355
          Nov 21 '18 at 20:18












          Does each of this list items, like [sentence ->1], have any standard structure/meaning? - it is metadata. It is map<string,string> so structure is not fixed, but in this case it contains information about the sentence form the document.
          – user10465355
          Nov 21 '18 at 20:21




          Does each of this list items, like [sentence ->1], have any standard structure/meaning? - it is metadata. It is map<string,string> so structure is not fixed, but in this case it contains information about the sentence form the document.
          – user10465355
          Nov 21 '18 at 20:21


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53418267%2fhow-to-use-johnsnowlabs-nlp-spell-correction-module-norvigsweetingmodel%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          404 Error Contact Form 7 ajax form submitting

          How to know if a Active Directory user can login interactively

          Refactoring coordinates for Minecraft Pi buildings written in Python