Simple matrix library in C++












3












$begingroup$


Today I started learning C++ and at the end of the day have made a simple generic matrix class. I'm looking for feedback on techniques and features. It's still not complete, though. But everything works!



I put some functions outside the class and inside a namespace because I was trouble defining template member functions with partial specialization.



Matrix.hpp



#pragma once

#include <iostream>

template <typename T, int m, int n = m>
class mat {

template <typename, int, int>
friend class mat;

private:

T * data;

public:

mat(const std::initializer_list<T> & ini) {
std::copy(ini.begin(), ini.end(), data);
}

mat() : data(new T[m * n]) {
}

mat(T * values) : data(values) {

}

mat(const mat & mat2) : mat(){
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
data[i * n + j] = mat2(i, j);
}

~mat() {
delete data;
}

void fill(T val) {
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
data[i * n + j] = val;
}

void print() {
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j)
std::cout << data[i * n + j] << " ";
std::cout << std::endl;
}
}

mat<T, m, 1> col(int j) const {
mat<T, m, 1> col;
for (int i = 0; i < m; ++i)
col.data[i] = data[i * n + j];
return col;
}

mat<T, 1, n> row(int i) const {
mat<T, 1, n> row;
std::copy_n(data + i * n, n, row.data);
return row;
}

T operator () (int row, int col) const {
return data[row * n + col];
}

T & operator () (int row, int col) {
return data[row * n + col];
}

mat<T, n, m> transpose() const {
mat<T, n, m> res;
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
res(j, i) = this->data[i * n + j];
return res;
}

template <int p>
mat<T, m, p> operator * (const mat<T, n, p> & other) const {
mat<T, m, p> res;
for (int i = 0; i < m; ++i)
for (int j = 0; j < p; ++j) {
T sum = 0;
for (int k = 0; k < n; ++k)
sum += this->data[i * n + k] * other.data[k * n + j];
res(i, j) = sum;
}
return res;
}

mat<T, m, n> & operator *= (T val) {
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
data[i * n + j] *= val;
return *this;
}

mat<T, m, n> & operator /= (T val) {
return this *= 1 / val;
}

mat<T, m, n> & operator += (const mat & other) {
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
data[i * n + j] += other(i, j);
return *this;
}

mat<T, m, n> & operator -= (const mat & other) {
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
data[i * n + j] -= other(i, j);
return *this;
}

mat<T, m, n> operator * (T val) const {
auto res(*this);
res *= val;
return res;
}

mat<T, m, n> operator / (T val) const {
return (*this) * (1 / val);
}

mat<T, m, n> operator + (const mat & other) const {
auto res(*this);
res += other;
return res;
}

mat<T, m, n> operator - (const mat & other) const {
auto res(*this);
res -= other;
return res;
}

mat<T, m - 1, n - 1> cut(int row, int col) const {
mat<T, m - 1, n - 1> res;
int index = 0;

for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j) {
if (i == row || j == col)
continue;
res.data[index++] = data[i * n + j];
}

return res;
}

};

namespace matrix {

template <typename T>
T det(const mat<T, 1, 1> & arg) {
return arg(0, 0);
}

template <typename T>
T det(const mat<T, 2, 2> & arg) {
return arg(0, 0) * arg(1, 1) - arg(1, 0) * arg(0, 1);
}

template <typename T, int n>
T det(const mat<T, n, n> & arg) {
T res = 0, coef = 1;
for (int i = 0; i < n; ++i, coef *= -1) {
res += coef * arg(0, i) * matrix::det(arg.cut(0, i));
}
return res;
}

template <typename T>
mat<T, 2, 2> inv(const mat<T, 2, 2> & arg) {
mat<T, 2, 2> helper;
helper(1, 1) = arg(0, 0);
helper(0, 0) = arg(1, 1);
helper(0, 1) = -arg(0, 1);
helper(1, 0) = -arg(1, 0);
return helper / det(arg);
}

template <typename T, int m>
mat<T, m, m> id() {
mat<T, m, m> res;
for (int i = 0; i < m; ++i)
res(i, i) = 1;
return res;
}

};


Main.cpp



#include <iostream>
#include <exception>

#include "Matrix.hpp"

using namespace std;


int main() {

constexpr int size = 4;

long * data = new long[size * size]{ 0 };
for (int i = 0; i < size; ++i)
data[size * i + i] = 2;

mat<long, size> big(data);
cout << matrix::det(big) << endl;

return 0;
}









share|improve this question











$endgroup$

















    3












    $begingroup$


    Today I started learning C++ and at the end of the day have made a simple generic matrix class. I'm looking for feedback on techniques and features. It's still not complete, though. But everything works!



    I put some functions outside the class and inside a namespace because I was trouble defining template member functions with partial specialization.



    Matrix.hpp



    #pragma once

    #include <iostream>

    template <typename T, int m, int n = m>
    class mat {

    template <typename, int, int>
    friend class mat;

    private:

    T * data;

    public:

    mat(const std::initializer_list<T> & ini) {
    std::copy(ini.begin(), ini.end(), data);
    }

    mat() : data(new T[m * n]) {
    }

    mat(T * values) : data(values) {

    }

    mat(const mat & mat2) : mat(){
    for (int i = 0; i < m; ++i)
    for (int j = 0; j < n; ++j)
    data[i * n + j] = mat2(i, j);
    }

    ~mat() {
    delete data;
    }

    void fill(T val) {
    for (int i = 0; i < m; ++i)
    for (int j = 0; j < n; ++j)
    data[i * n + j] = val;
    }

    void print() {
    for (int i = 0; i < m; ++i) {
    for (int j = 0; j < n; ++j)
    std::cout << data[i * n + j] << " ";
    std::cout << std::endl;
    }
    }

    mat<T, m, 1> col(int j) const {
    mat<T, m, 1> col;
    for (int i = 0; i < m; ++i)
    col.data[i] = data[i * n + j];
    return col;
    }

    mat<T, 1, n> row(int i) const {
    mat<T, 1, n> row;
    std::copy_n(data + i * n, n, row.data);
    return row;
    }

    T operator () (int row, int col) const {
    return data[row * n + col];
    }

    T & operator () (int row, int col) {
    return data[row * n + col];
    }

    mat<T, n, m> transpose() const {
    mat<T, n, m> res;
    for (int i = 0; i < m; ++i)
    for (int j = 0; j < n; ++j)
    res(j, i) = this->data[i * n + j];
    return res;
    }

    template <int p>
    mat<T, m, p> operator * (const mat<T, n, p> & other) const {
    mat<T, m, p> res;
    for (int i = 0; i < m; ++i)
    for (int j = 0; j < p; ++j) {
    T sum = 0;
    for (int k = 0; k < n; ++k)
    sum += this->data[i * n + k] * other.data[k * n + j];
    res(i, j) = sum;
    }
    return res;
    }

    mat<T, m, n> & operator *= (T val) {
    for (int i = 0; i < m; ++i)
    for (int j = 0; j < n; ++j)
    data[i * n + j] *= val;
    return *this;
    }

    mat<T, m, n> & operator /= (T val) {
    return this *= 1 / val;
    }

    mat<T, m, n> & operator += (const mat & other) {
    for (int i = 0; i < m; ++i)
    for (int j = 0; j < n; ++j)
    data[i * n + j] += other(i, j);
    return *this;
    }

    mat<T, m, n> & operator -= (const mat & other) {
    for (int i = 0; i < m; ++i)
    for (int j = 0; j < n; ++j)
    data[i * n + j] -= other(i, j);
    return *this;
    }

    mat<T, m, n> operator * (T val) const {
    auto res(*this);
    res *= val;
    return res;
    }

    mat<T, m, n> operator / (T val) const {
    return (*this) * (1 / val);
    }

    mat<T, m, n> operator + (const mat & other) const {
    auto res(*this);
    res += other;
    return res;
    }

    mat<T, m, n> operator - (const mat & other) const {
    auto res(*this);
    res -= other;
    return res;
    }

    mat<T, m - 1, n - 1> cut(int row, int col) const {
    mat<T, m - 1, n - 1> res;
    int index = 0;

    for (int i = 0; i < m; ++i)
    for (int j = 0; j < n; ++j) {
    if (i == row || j == col)
    continue;
    res.data[index++] = data[i * n + j];
    }

    return res;
    }

    };

    namespace matrix {

    template <typename T>
    T det(const mat<T, 1, 1> & arg) {
    return arg(0, 0);
    }

    template <typename T>
    T det(const mat<T, 2, 2> & arg) {
    return arg(0, 0) * arg(1, 1) - arg(1, 0) * arg(0, 1);
    }

    template <typename T, int n>
    T det(const mat<T, n, n> & arg) {
    T res = 0, coef = 1;
    for (int i = 0; i < n; ++i, coef *= -1) {
    res += coef * arg(0, i) * matrix::det(arg.cut(0, i));
    }
    return res;
    }

    template <typename T>
    mat<T, 2, 2> inv(const mat<T, 2, 2> & arg) {
    mat<T, 2, 2> helper;
    helper(1, 1) = arg(0, 0);
    helper(0, 0) = arg(1, 1);
    helper(0, 1) = -arg(0, 1);
    helper(1, 0) = -arg(1, 0);
    return helper / det(arg);
    }

    template <typename T, int m>
    mat<T, m, m> id() {
    mat<T, m, m> res;
    for (int i = 0; i < m; ++i)
    res(i, i) = 1;
    return res;
    }

    };


    Main.cpp



    #include <iostream>
    #include <exception>

    #include "Matrix.hpp"

    using namespace std;


    int main() {

    constexpr int size = 4;

    long * data = new long[size * size]{ 0 };
    for (int i = 0; i < size; ++i)
    data[size * i + i] = 2;

    mat<long, size> big(data);
    cout << matrix::det(big) << endl;

    return 0;
    }









    share|improve this question











    $endgroup$















      3












      3








      3





      $begingroup$


      Today I started learning C++ and at the end of the day have made a simple generic matrix class. I'm looking for feedback on techniques and features. It's still not complete, though. But everything works!



      I put some functions outside the class and inside a namespace because I was trouble defining template member functions with partial specialization.



      Matrix.hpp



      #pragma once

      #include <iostream>

      template <typename T, int m, int n = m>
      class mat {

      template <typename, int, int>
      friend class mat;

      private:

      T * data;

      public:

      mat(const std::initializer_list<T> & ini) {
      std::copy(ini.begin(), ini.end(), data);
      }

      mat() : data(new T[m * n]) {
      }

      mat(T * values) : data(values) {

      }

      mat(const mat & mat2) : mat(){
      for (int i = 0; i < m; ++i)
      for (int j = 0; j < n; ++j)
      data[i * n + j] = mat2(i, j);
      }

      ~mat() {
      delete data;
      }

      void fill(T val) {
      for (int i = 0; i < m; ++i)
      for (int j = 0; j < n; ++j)
      data[i * n + j] = val;
      }

      void print() {
      for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j)
      std::cout << data[i * n + j] << " ";
      std::cout << std::endl;
      }
      }

      mat<T, m, 1> col(int j) const {
      mat<T, m, 1> col;
      for (int i = 0; i < m; ++i)
      col.data[i] = data[i * n + j];
      return col;
      }

      mat<T, 1, n> row(int i) const {
      mat<T, 1, n> row;
      std::copy_n(data + i * n, n, row.data);
      return row;
      }

      T operator () (int row, int col) const {
      return data[row * n + col];
      }

      T & operator () (int row, int col) {
      return data[row * n + col];
      }

      mat<T, n, m> transpose() const {
      mat<T, n, m> res;
      for (int i = 0; i < m; ++i)
      for (int j = 0; j < n; ++j)
      res(j, i) = this->data[i * n + j];
      return res;
      }

      template <int p>
      mat<T, m, p> operator * (const mat<T, n, p> & other) const {
      mat<T, m, p> res;
      for (int i = 0; i < m; ++i)
      for (int j = 0; j < p; ++j) {
      T sum = 0;
      for (int k = 0; k < n; ++k)
      sum += this->data[i * n + k] * other.data[k * n + j];
      res(i, j) = sum;
      }
      return res;
      }

      mat<T, m, n> & operator *= (T val) {
      for (int i = 0; i < m; ++i)
      for (int j = 0; j < n; ++j)
      data[i * n + j] *= val;
      return *this;
      }

      mat<T, m, n> & operator /= (T val) {
      return this *= 1 / val;
      }

      mat<T, m, n> & operator += (const mat & other) {
      for (int i = 0; i < m; ++i)
      for (int j = 0; j < n; ++j)
      data[i * n + j] += other(i, j);
      return *this;
      }

      mat<T, m, n> & operator -= (const mat & other) {
      for (int i = 0; i < m; ++i)
      for (int j = 0; j < n; ++j)
      data[i * n + j] -= other(i, j);
      return *this;
      }

      mat<T, m, n> operator * (T val) const {
      auto res(*this);
      res *= val;
      return res;
      }

      mat<T, m, n> operator / (T val) const {
      return (*this) * (1 / val);
      }

      mat<T, m, n> operator + (const mat & other) const {
      auto res(*this);
      res += other;
      return res;
      }

      mat<T, m, n> operator - (const mat & other) const {
      auto res(*this);
      res -= other;
      return res;
      }

      mat<T, m - 1, n - 1> cut(int row, int col) const {
      mat<T, m - 1, n - 1> res;
      int index = 0;

      for (int i = 0; i < m; ++i)
      for (int j = 0; j < n; ++j) {
      if (i == row || j == col)
      continue;
      res.data[index++] = data[i * n + j];
      }

      return res;
      }

      };

      namespace matrix {

      template <typename T>
      T det(const mat<T, 1, 1> & arg) {
      return arg(0, 0);
      }

      template <typename T>
      T det(const mat<T, 2, 2> & arg) {
      return arg(0, 0) * arg(1, 1) - arg(1, 0) * arg(0, 1);
      }

      template <typename T, int n>
      T det(const mat<T, n, n> & arg) {
      T res = 0, coef = 1;
      for (int i = 0; i < n; ++i, coef *= -1) {
      res += coef * arg(0, i) * matrix::det(arg.cut(0, i));
      }
      return res;
      }

      template <typename T>
      mat<T, 2, 2> inv(const mat<T, 2, 2> & arg) {
      mat<T, 2, 2> helper;
      helper(1, 1) = arg(0, 0);
      helper(0, 0) = arg(1, 1);
      helper(0, 1) = -arg(0, 1);
      helper(1, 0) = -arg(1, 0);
      return helper / det(arg);
      }

      template <typename T, int m>
      mat<T, m, m> id() {
      mat<T, m, m> res;
      for (int i = 0; i < m; ++i)
      res(i, i) = 1;
      return res;
      }

      };


      Main.cpp



      #include <iostream>
      #include <exception>

      #include "Matrix.hpp"

      using namespace std;


      int main() {

      constexpr int size = 4;

      long * data = new long[size * size]{ 0 };
      for (int i = 0; i < size; ++i)
      data[size * i + i] = 2;

      mat<long, size> big(data);
      cout << matrix::det(big) << endl;

      return 0;
      }









      share|improve this question











      $endgroup$




      Today I started learning C++ and at the end of the day have made a simple generic matrix class. I'm looking for feedback on techniques and features. It's still not complete, though. But everything works!



      I put some functions outside the class and inside a namespace because I was trouble defining template member functions with partial specialization.



      Matrix.hpp



      #pragma once

      #include <iostream>

      template <typename T, int m, int n = m>
      class mat {

      template <typename, int, int>
      friend class mat;

      private:

      T * data;

      public:

      mat(const std::initializer_list<T> & ini) {
      std::copy(ini.begin(), ini.end(), data);
      }

      mat() : data(new T[m * n]) {
      }

      mat(T * values) : data(values) {

      }

      mat(const mat & mat2) : mat(){
      for (int i = 0; i < m; ++i)
      for (int j = 0; j < n; ++j)
      data[i * n + j] = mat2(i, j);
      }

      ~mat() {
      delete data;
      }

      void fill(T val) {
      for (int i = 0; i < m; ++i)
      for (int j = 0; j < n; ++j)
      data[i * n + j] = val;
      }

      void print() {
      for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j)
      std::cout << data[i * n + j] << " ";
      std::cout << std::endl;
      }
      }

      mat<T, m, 1> col(int j) const {
      mat<T, m, 1> col;
      for (int i = 0; i < m; ++i)
      col.data[i] = data[i * n + j];
      return col;
      }

      mat<T, 1, n> row(int i) const {
      mat<T, 1, n> row;
      std::copy_n(data + i * n, n, row.data);
      return row;
      }

      T operator () (int row, int col) const {
      return data[row * n + col];
      }

      T & operator () (int row, int col) {
      return data[row * n + col];
      }

      mat<T, n, m> transpose() const {
      mat<T, n, m> res;
      for (int i = 0; i < m; ++i)
      for (int j = 0; j < n; ++j)
      res(j, i) = this->data[i * n + j];
      return res;
      }

      template <int p>
      mat<T, m, p> operator * (const mat<T, n, p> & other) const {
      mat<T, m, p> res;
      for (int i = 0; i < m; ++i)
      for (int j = 0; j < p; ++j) {
      T sum = 0;
      for (int k = 0; k < n; ++k)
      sum += this->data[i * n + k] * other.data[k * n + j];
      res(i, j) = sum;
      }
      return res;
      }

      mat<T, m, n> & operator *= (T val) {
      for (int i = 0; i < m; ++i)
      for (int j = 0; j < n; ++j)
      data[i * n + j] *= val;
      return *this;
      }

      mat<T, m, n> & operator /= (T val) {
      return this *= 1 / val;
      }

      mat<T, m, n> & operator += (const mat & other) {
      for (int i = 0; i < m; ++i)
      for (int j = 0; j < n; ++j)
      data[i * n + j] += other(i, j);
      return *this;
      }

      mat<T, m, n> & operator -= (const mat & other) {
      for (int i = 0; i < m; ++i)
      for (int j = 0; j < n; ++j)
      data[i * n + j] -= other(i, j);
      return *this;
      }

      mat<T, m, n> operator * (T val) const {
      auto res(*this);
      res *= val;
      return res;
      }

      mat<T, m, n> operator / (T val) const {
      return (*this) * (1 / val);
      }

      mat<T, m, n> operator + (const mat & other) const {
      auto res(*this);
      res += other;
      return res;
      }

      mat<T, m, n> operator - (const mat & other) const {
      auto res(*this);
      res -= other;
      return res;
      }

      mat<T, m - 1, n - 1> cut(int row, int col) const {
      mat<T, m - 1, n - 1> res;
      int index = 0;

      for (int i = 0; i < m; ++i)
      for (int j = 0; j < n; ++j) {
      if (i == row || j == col)
      continue;
      res.data[index++] = data[i * n + j];
      }

      return res;
      }

      };

      namespace matrix {

      template <typename T>
      T det(const mat<T, 1, 1> & arg) {
      return arg(0, 0);
      }

      template <typename T>
      T det(const mat<T, 2, 2> & arg) {
      return arg(0, 0) * arg(1, 1) - arg(1, 0) * arg(0, 1);
      }

      template <typename T, int n>
      T det(const mat<T, n, n> & arg) {
      T res = 0, coef = 1;
      for (int i = 0; i < n; ++i, coef *= -1) {
      res += coef * arg(0, i) * matrix::det(arg.cut(0, i));
      }
      return res;
      }

      template <typename T>
      mat<T, 2, 2> inv(const mat<T, 2, 2> & arg) {
      mat<T, 2, 2> helper;
      helper(1, 1) = arg(0, 0);
      helper(0, 0) = arg(1, 1);
      helper(0, 1) = -arg(0, 1);
      helper(1, 0) = -arg(1, 0);
      return helper / det(arg);
      }

      template <typename T, int m>
      mat<T, m, m> id() {
      mat<T, m, m> res;
      for (int i = 0; i < m; ++i)
      res(i, i) = 1;
      return res;
      }

      };


      Main.cpp



      #include <iostream>
      #include <exception>

      #include "Matrix.hpp"

      using namespace std;


      int main() {

      constexpr int size = 4;

      long * data = new long[size * size]{ 0 };
      for (int i = 0; i < size; ++i)
      data[size * i + i] = 2;

      mat<long, size> big(data);
      cout << matrix::det(big) << endl;

      return 0;
      }






      c++ beginner matrix






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 17 mins ago









      200_success

      129k15153415




      129k15153415










      asked 2 hours ago









      Afonso MatosAfonso Matos

      36528




      36528






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "196"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f212178%2fsimple-matrix-library-in-c%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Code Review Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f212178%2fsimple-matrix-library-in-c%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          404 Error Contact Form 7 ajax form submitting

          How to know if a Active Directory user can login interactively

          TypeError: fit_transform() missing 1 required positional argument: 'X'