Number of ways to Decode a String [Recursion to DP]











up vote
0
down vote

favorite












I'm working on problem 91 on Leetcode.com called Decode Ways and I've successfully managed to get a working recusive solution but it results in Time Limited Exceeded(TLE). I'm new to utilizing memoization and I've been unable to discover how to properly memoize my results at each resursive step and check if I've already solve the sub-problem



How do I properly store my calculated results to 'evolve' my code from recursion to DP?



Prompt:



A message containing letters from A-Z is being encoded to numbers using the following mapping:



'A' -> 1

'B' -> 2

...

'Z' -> 26



Given a non-empty string containing only digits, determine the total number of ways to decode it.



Working Code (TLE):



public int NumDecodings(string s) 
{
if (s == null || s.Length == 0) return 0;
// int dp = new int[s.Length + 1];
// for (int i = 0; i < dp.Length; ++i) dp[i] = -1;
// dp[0] = 1;
// dp[1] = Decode(s, 0, 1, dp) + Decode(s, 0, 2, dp);
int jump1 = Decode(s, 0, 1);
int jump2 = Decode(s, 0, 2);
return jump1 + jump2;
// return dp[1];
}

public int Decode(string s, int i, int len)
{
if (i + len - 1 >= s.Length)
return 0;

// if (dp[i] > -1)
// return dp[i];

int sub = Convert.ToInt32(s.Substring(i, len));
if (sub > 26 || sub < 1 || s.Substring(i, len)[0] == '0')
return 0;
else if (i + len - 1 == s.Length - 1 && sub < 27 && sub > 0)
return 1;

int jump1 = i + len - 1 + 1 < s.Length ? Decode(s, i + len, 1) : 0;
int jump2 = i + len - 1 + 2 < s.Length ? Decode(s, i + len, 2) : 0;
// dp[i] = jump1 + jump2;

return jump1 + jump2;
// return dp[i];
}









share|improve this question


























    up vote
    0
    down vote

    favorite












    I'm working on problem 91 on Leetcode.com called Decode Ways and I've successfully managed to get a working recusive solution but it results in Time Limited Exceeded(TLE). I'm new to utilizing memoization and I've been unable to discover how to properly memoize my results at each resursive step and check if I've already solve the sub-problem



    How do I properly store my calculated results to 'evolve' my code from recursion to DP?



    Prompt:



    A message containing letters from A-Z is being encoded to numbers using the following mapping:



    'A' -> 1

    'B' -> 2

    ...

    'Z' -> 26



    Given a non-empty string containing only digits, determine the total number of ways to decode it.



    Working Code (TLE):



    public int NumDecodings(string s) 
    {
    if (s == null || s.Length == 0) return 0;
    // int dp = new int[s.Length + 1];
    // for (int i = 0; i < dp.Length; ++i) dp[i] = -1;
    // dp[0] = 1;
    // dp[1] = Decode(s, 0, 1, dp) + Decode(s, 0, 2, dp);
    int jump1 = Decode(s, 0, 1);
    int jump2 = Decode(s, 0, 2);
    return jump1 + jump2;
    // return dp[1];
    }

    public int Decode(string s, int i, int len)
    {
    if (i + len - 1 >= s.Length)
    return 0;

    // if (dp[i] > -1)
    // return dp[i];

    int sub = Convert.ToInt32(s.Substring(i, len));
    if (sub > 26 || sub < 1 || s.Substring(i, len)[0] == '0')
    return 0;
    else if (i + len - 1 == s.Length - 1 && sub < 27 && sub > 0)
    return 1;

    int jump1 = i + len - 1 + 1 < s.Length ? Decode(s, i + len, 1) : 0;
    int jump2 = i + len - 1 + 2 < s.Length ? Decode(s, i + len, 2) : 0;
    // dp[i] = jump1 + jump2;

    return jump1 + jump2;
    // return dp[i];
    }









    share|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I'm working on problem 91 on Leetcode.com called Decode Ways and I've successfully managed to get a working recusive solution but it results in Time Limited Exceeded(TLE). I'm new to utilizing memoization and I've been unable to discover how to properly memoize my results at each resursive step and check if I've already solve the sub-problem



      How do I properly store my calculated results to 'evolve' my code from recursion to DP?



      Prompt:



      A message containing letters from A-Z is being encoded to numbers using the following mapping:



      'A' -> 1

      'B' -> 2

      ...

      'Z' -> 26



      Given a non-empty string containing only digits, determine the total number of ways to decode it.



      Working Code (TLE):



      public int NumDecodings(string s) 
      {
      if (s == null || s.Length == 0) return 0;
      // int dp = new int[s.Length + 1];
      // for (int i = 0; i < dp.Length; ++i) dp[i] = -1;
      // dp[0] = 1;
      // dp[1] = Decode(s, 0, 1, dp) + Decode(s, 0, 2, dp);
      int jump1 = Decode(s, 0, 1);
      int jump2 = Decode(s, 0, 2);
      return jump1 + jump2;
      // return dp[1];
      }

      public int Decode(string s, int i, int len)
      {
      if (i + len - 1 >= s.Length)
      return 0;

      // if (dp[i] > -1)
      // return dp[i];

      int sub = Convert.ToInt32(s.Substring(i, len));
      if (sub > 26 || sub < 1 || s.Substring(i, len)[0] == '0')
      return 0;
      else if (i + len - 1 == s.Length - 1 && sub < 27 && sub > 0)
      return 1;

      int jump1 = i + len - 1 + 1 < s.Length ? Decode(s, i + len, 1) : 0;
      int jump2 = i + len - 1 + 2 < s.Length ? Decode(s, i + len, 2) : 0;
      // dp[i] = jump1 + jump2;

      return jump1 + jump2;
      // return dp[i];
      }









      share|improve this question













      I'm working on problem 91 on Leetcode.com called Decode Ways and I've successfully managed to get a working recusive solution but it results in Time Limited Exceeded(TLE). I'm new to utilizing memoization and I've been unable to discover how to properly memoize my results at each resursive step and check if I've already solve the sub-problem



      How do I properly store my calculated results to 'evolve' my code from recursion to DP?



      Prompt:



      A message containing letters from A-Z is being encoded to numbers using the following mapping:



      'A' -> 1

      'B' -> 2

      ...

      'Z' -> 26



      Given a non-empty string containing only digits, determine the total number of ways to decode it.



      Working Code (TLE):



      public int NumDecodings(string s) 
      {
      if (s == null || s.Length == 0) return 0;
      // int dp = new int[s.Length + 1];
      // for (int i = 0; i < dp.Length; ++i) dp[i] = -1;
      // dp[0] = 1;
      // dp[1] = Decode(s, 0, 1, dp) + Decode(s, 0, 2, dp);
      int jump1 = Decode(s, 0, 1);
      int jump2 = Decode(s, 0, 2);
      return jump1 + jump2;
      // return dp[1];
      }

      public int Decode(string s, int i, int len)
      {
      if (i + len - 1 >= s.Length)
      return 0;

      // if (dp[i] > -1)
      // return dp[i];

      int sub = Convert.ToInt32(s.Substring(i, len));
      if (sub > 26 || sub < 1 || s.Substring(i, len)[0] == '0')
      return 0;
      else if (i + len - 1 == s.Length - 1 && sub < 27 && sub > 0)
      return 1;

      int jump1 = i + len - 1 + 1 < s.Length ? Decode(s, i + len, 1) : 0;
      int jump2 = i + len - 1 + 2 < s.Length ? Decode(s, i + len, 2) : 0;
      // dp[i] = jump1 + jump2;

      return jump1 + jump2;
      // return dp[i];
      }






      c# recursion dynamic-programming






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 18 mins ago









      springathing

      286




      286



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "196"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f208849%2fnumber-of-ways-to-decode-a-string-recursion-to-dp%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Code Review Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f208849%2fnumber-of-ways-to-decode-a-string-recursion-to-dp%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          404 Error Contact Form 7 ajax form submitting

          How to know if a Active Directory user can login interactively

          Refactoring coordinates for Minecraft Pi buildings written in Python