Dataframes join returns empty results in Spark Scala












0















I have four data frames in Spark Scala (Spark version: 2.3 and Spark-sql: 2.11 and Scala version: 2.11.0) such as:



ratingsDf



+-------+---+
|ratings| id|
+-------+---+
| 0| 1|
| 1| 2|
| 1| 3|
| 0| 4|
| 0| 5|
| 1| 6|
| 1| 7|
| 1| 8|
| 0| 9|
| 1| 10|
+-------+---+


GpredictionsDf



+-----------+---+
|gprediction| id|
+-----------+---+
| 0| 1|
| 1| 2|
| 1| 3|
| 1| 4|
| 1| 5|
| 1| 6|
| 1| 7|
| 1| 8|
| 0| 9|
| 1| 10|
+-----------+---+


RpredictionsDf



+-----------+---+
|rprediction| id|
+-----------+---+
| 0| 1|
| 1| 2|
| 1| 3|
| 1| 4|
| 1| 5|
| 1| 6|
| 1| 7|
| 1| 8|
| 1| 9|
| 1| 10|
+-----------+---+


LpredictionsDf



+-----------+---+
|lprediction| id|
+-----------+---+
| 0| 1|
| 1| 2|
| 1| 3|
| 0| 4|
| 1| 5|
| 1| 6|
| 1| 7|
| 1| 8|
| 0| 9|
| 1| 10|
+-----------+---+


I need to create a DataFrame by joining all four tables on "id" column. I tried below two ways to do this:



**Method 1: **



val ensembleDf = GpredictionsDf.join(rpredjoin, gpredjoin("id") === RpredictionsDf("id"))
.join(LpredictionsDf, LpredictionsDf("id") === RpredictionsDf("id"))
.join(ratingsDf, ratingsDf("id") === RpredictionsDf("id"))
.select("gprediction", "rprediction", "lprediction", "ratings")


**Method 2: **



ratingsDf.createOrReplaceTempView("ratingjoin");
GpredictionsDf.createOrReplaceTempView("gpredjoin")
RpredictionsDf.createOrReplaceTempView("rpredjoin")
LpredictionsDf.createOrReplaceTempView("lpredjoin")


val ensembleDf = sqlContext.sql("SELECT gprediction, rprediction, lprediction, ratings FROM gpredjoin, rpredjoin, lpredjoin, ratingjoin WHERE " +
"gpredjoin.id = rpredjoin.id AND rpredjoin.id = lpredjoin.id AND lpredjoin.id = ratingjoin.id");


However, in both cases my join failes and returns empty



ensembleDf.show();

+-----------+-----------+-----------+-------+
|gprediction|rprediction|lprediction|ratings|
+-----------+-----------+-----------+-------+
+-----------+-----------+-----------+-------+


Any idea why this could be happening? What code changes do I need to do to get this fixed?










share|improve this question

























  • Could you please follow the instructions from How to make good reproducible Apache Spark Dataframe examples and include reproducible data and Spark version? Thanks.

    – user10465355
    Nov 25 '18 at 23:24











  • I have updated it accordingly

    – Nick
    Nov 25 '18 at 23:43











  • All of these including rpredjoin and gpredjoin are dataframes only. There are no hive tables here

    – Nick
    Nov 26 '18 at 0:59













  • Your joins in Method 1 look correct except that temp views were being mixed with dataframes. Replacing GpredictionsDf.join(rpredjoin, gpredjoin("id") === RpredictionsDf("id")) with GpredictionsDf.join(RpredictionsDf, GpredictionsDf("id") === RpredictionsDf("id")) should fix the problem.

    – Leo C
    Nov 26 '18 at 1:46











  • I added val ensemble = GpredictionsDf.join(RpredictionsDf, GpredictionsDf("id") === RpredictionsDf("id")) .join(LpredictionsDf, LpredictionsDf("id") === RpredictionsDf("id")) .join(ratingsDf, ratingsDf("id") === RpredictionsDf("id")) .select("gprediction", "rprediction", "lprediction", "ratings"); It still shows empty dataset

    – Nick
    Nov 26 '18 at 3:01
















0















I have four data frames in Spark Scala (Spark version: 2.3 and Spark-sql: 2.11 and Scala version: 2.11.0) such as:



ratingsDf



+-------+---+
|ratings| id|
+-------+---+
| 0| 1|
| 1| 2|
| 1| 3|
| 0| 4|
| 0| 5|
| 1| 6|
| 1| 7|
| 1| 8|
| 0| 9|
| 1| 10|
+-------+---+


GpredictionsDf



+-----------+---+
|gprediction| id|
+-----------+---+
| 0| 1|
| 1| 2|
| 1| 3|
| 1| 4|
| 1| 5|
| 1| 6|
| 1| 7|
| 1| 8|
| 0| 9|
| 1| 10|
+-----------+---+


RpredictionsDf



+-----------+---+
|rprediction| id|
+-----------+---+
| 0| 1|
| 1| 2|
| 1| 3|
| 1| 4|
| 1| 5|
| 1| 6|
| 1| 7|
| 1| 8|
| 1| 9|
| 1| 10|
+-----------+---+


LpredictionsDf



+-----------+---+
|lprediction| id|
+-----------+---+
| 0| 1|
| 1| 2|
| 1| 3|
| 0| 4|
| 1| 5|
| 1| 6|
| 1| 7|
| 1| 8|
| 0| 9|
| 1| 10|
+-----------+---+


I need to create a DataFrame by joining all four tables on "id" column. I tried below two ways to do this:



**Method 1: **



val ensembleDf = GpredictionsDf.join(rpredjoin, gpredjoin("id") === RpredictionsDf("id"))
.join(LpredictionsDf, LpredictionsDf("id") === RpredictionsDf("id"))
.join(ratingsDf, ratingsDf("id") === RpredictionsDf("id"))
.select("gprediction", "rprediction", "lprediction", "ratings")


**Method 2: **



ratingsDf.createOrReplaceTempView("ratingjoin");
GpredictionsDf.createOrReplaceTempView("gpredjoin")
RpredictionsDf.createOrReplaceTempView("rpredjoin")
LpredictionsDf.createOrReplaceTempView("lpredjoin")


val ensembleDf = sqlContext.sql("SELECT gprediction, rprediction, lprediction, ratings FROM gpredjoin, rpredjoin, lpredjoin, ratingjoin WHERE " +
"gpredjoin.id = rpredjoin.id AND rpredjoin.id = lpredjoin.id AND lpredjoin.id = ratingjoin.id");


However, in both cases my join failes and returns empty



ensembleDf.show();

+-----------+-----------+-----------+-------+
|gprediction|rprediction|lprediction|ratings|
+-----------+-----------+-----------+-------+
+-----------+-----------+-----------+-------+


Any idea why this could be happening? What code changes do I need to do to get this fixed?










share|improve this question

























  • Could you please follow the instructions from How to make good reproducible Apache Spark Dataframe examples and include reproducible data and Spark version? Thanks.

    – user10465355
    Nov 25 '18 at 23:24











  • I have updated it accordingly

    – Nick
    Nov 25 '18 at 23:43











  • All of these including rpredjoin and gpredjoin are dataframes only. There are no hive tables here

    – Nick
    Nov 26 '18 at 0:59













  • Your joins in Method 1 look correct except that temp views were being mixed with dataframes. Replacing GpredictionsDf.join(rpredjoin, gpredjoin("id") === RpredictionsDf("id")) with GpredictionsDf.join(RpredictionsDf, GpredictionsDf("id") === RpredictionsDf("id")) should fix the problem.

    – Leo C
    Nov 26 '18 at 1:46











  • I added val ensemble = GpredictionsDf.join(RpredictionsDf, GpredictionsDf("id") === RpredictionsDf("id")) .join(LpredictionsDf, LpredictionsDf("id") === RpredictionsDf("id")) .join(ratingsDf, ratingsDf("id") === RpredictionsDf("id")) .select("gprediction", "rprediction", "lprediction", "ratings"); It still shows empty dataset

    – Nick
    Nov 26 '18 at 3:01














0












0








0


1






I have four data frames in Spark Scala (Spark version: 2.3 and Spark-sql: 2.11 and Scala version: 2.11.0) such as:



ratingsDf



+-------+---+
|ratings| id|
+-------+---+
| 0| 1|
| 1| 2|
| 1| 3|
| 0| 4|
| 0| 5|
| 1| 6|
| 1| 7|
| 1| 8|
| 0| 9|
| 1| 10|
+-------+---+


GpredictionsDf



+-----------+---+
|gprediction| id|
+-----------+---+
| 0| 1|
| 1| 2|
| 1| 3|
| 1| 4|
| 1| 5|
| 1| 6|
| 1| 7|
| 1| 8|
| 0| 9|
| 1| 10|
+-----------+---+


RpredictionsDf



+-----------+---+
|rprediction| id|
+-----------+---+
| 0| 1|
| 1| 2|
| 1| 3|
| 1| 4|
| 1| 5|
| 1| 6|
| 1| 7|
| 1| 8|
| 1| 9|
| 1| 10|
+-----------+---+


LpredictionsDf



+-----------+---+
|lprediction| id|
+-----------+---+
| 0| 1|
| 1| 2|
| 1| 3|
| 0| 4|
| 1| 5|
| 1| 6|
| 1| 7|
| 1| 8|
| 0| 9|
| 1| 10|
+-----------+---+


I need to create a DataFrame by joining all four tables on "id" column. I tried below two ways to do this:



**Method 1: **



val ensembleDf = GpredictionsDf.join(rpredjoin, gpredjoin("id") === RpredictionsDf("id"))
.join(LpredictionsDf, LpredictionsDf("id") === RpredictionsDf("id"))
.join(ratingsDf, ratingsDf("id") === RpredictionsDf("id"))
.select("gprediction", "rprediction", "lprediction", "ratings")


**Method 2: **



ratingsDf.createOrReplaceTempView("ratingjoin");
GpredictionsDf.createOrReplaceTempView("gpredjoin")
RpredictionsDf.createOrReplaceTempView("rpredjoin")
LpredictionsDf.createOrReplaceTempView("lpredjoin")


val ensembleDf = sqlContext.sql("SELECT gprediction, rprediction, lprediction, ratings FROM gpredjoin, rpredjoin, lpredjoin, ratingjoin WHERE " +
"gpredjoin.id = rpredjoin.id AND rpredjoin.id = lpredjoin.id AND lpredjoin.id = ratingjoin.id");


However, in both cases my join failes and returns empty



ensembleDf.show();

+-----------+-----------+-----------+-------+
|gprediction|rprediction|lprediction|ratings|
+-----------+-----------+-----------+-------+
+-----------+-----------+-----------+-------+


Any idea why this could be happening? What code changes do I need to do to get this fixed?










share|improve this question
















I have four data frames in Spark Scala (Spark version: 2.3 and Spark-sql: 2.11 and Scala version: 2.11.0) such as:



ratingsDf



+-------+---+
|ratings| id|
+-------+---+
| 0| 1|
| 1| 2|
| 1| 3|
| 0| 4|
| 0| 5|
| 1| 6|
| 1| 7|
| 1| 8|
| 0| 9|
| 1| 10|
+-------+---+


GpredictionsDf



+-----------+---+
|gprediction| id|
+-----------+---+
| 0| 1|
| 1| 2|
| 1| 3|
| 1| 4|
| 1| 5|
| 1| 6|
| 1| 7|
| 1| 8|
| 0| 9|
| 1| 10|
+-----------+---+


RpredictionsDf



+-----------+---+
|rprediction| id|
+-----------+---+
| 0| 1|
| 1| 2|
| 1| 3|
| 1| 4|
| 1| 5|
| 1| 6|
| 1| 7|
| 1| 8|
| 1| 9|
| 1| 10|
+-----------+---+


LpredictionsDf



+-----------+---+
|lprediction| id|
+-----------+---+
| 0| 1|
| 1| 2|
| 1| 3|
| 0| 4|
| 1| 5|
| 1| 6|
| 1| 7|
| 1| 8|
| 0| 9|
| 1| 10|
+-----------+---+


I need to create a DataFrame by joining all four tables on "id" column. I tried below two ways to do this:



**Method 1: **



val ensembleDf = GpredictionsDf.join(rpredjoin, gpredjoin("id") === RpredictionsDf("id"))
.join(LpredictionsDf, LpredictionsDf("id") === RpredictionsDf("id"))
.join(ratingsDf, ratingsDf("id") === RpredictionsDf("id"))
.select("gprediction", "rprediction", "lprediction", "ratings")


**Method 2: **



ratingsDf.createOrReplaceTempView("ratingjoin");
GpredictionsDf.createOrReplaceTempView("gpredjoin")
RpredictionsDf.createOrReplaceTempView("rpredjoin")
LpredictionsDf.createOrReplaceTempView("lpredjoin")


val ensembleDf = sqlContext.sql("SELECT gprediction, rprediction, lprediction, ratings FROM gpredjoin, rpredjoin, lpredjoin, ratingjoin WHERE " +
"gpredjoin.id = rpredjoin.id AND rpredjoin.id = lpredjoin.id AND lpredjoin.id = ratingjoin.id");


However, in both cases my join failes and returns empty



ensembleDf.show();

+-----------+-----------+-----------+-------+
|gprediction|rprediction|lprediction|ratings|
+-----------+-----------+-----------+-------+
+-----------+-----------+-----------+-------+


Any idea why this could be happening? What code changes do I need to do to get this fixed?







apache-spark apache-spark-sql






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 25 '18 at 23:39







Nick

















asked Nov 25 '18 at 22:30









NickNick

98110




98110













  • Could you please follow the instructions from How to make good reproducible Apache Spark Dataframe examples and include reproducible data and Spark version? Thanks.

    – user10465355
    Nov 25 '18 at 23:24











  • I have updated it accordingly

    – Nick
    Nov 25 '18 at 23:43











  • All of these including rpredjoin and gpredjoin are dataframes only. There are no hive tables here

    – Nick
    Nov 26 '18 at 0:59













  • Your joins in Method 1 look correct except that temp views were being mixed with dataframes. Replacing GpredictionsDf.join(rpredjoin, gpredjoin("id") === RpredictionsDf("id")) with GpredictionsDf.join(RpredictionsDf, GpredictionsDf("id") === RpredictionsDf("id")) should fix the problem.

    – Leo C
    Nov 26 '18 at 1:46











  • I added val ensemble = GpredictionsDf.join(RpredictionsDf, GpredictionsDf("id") === RpredictionsDf("id")) .join(LpredictionsDf, LpredictionsDf("id") === RpredictionsDf("id")) .join(ratingsDf, ratingsDf("id") === RpredictionsDf("id")) .select("gprediction", "rprediction", "lprediction", "ratings"); It still shows empty dataset

    – Nick
    Nov 26 '18 at 3:01



















  • Could you please follow the instructions from How to make good reproducible Apache Spark Dataframe examples and include reproducible data and Spark version? Thanks.

    – user10465355
    Nov 25 '18 at 23:24











  • I have updated it accordingly

    – Nick
    Nov 25 '18 at 23:43











  • All of these including rpredjoin and gpredjoin are dataframes only. There are no hive tables here

    – Nick
    Nov 26 '18 at 0:59













  • Your joins in Method 1 look correct except that temp views were being mixed with dataframes. Replacing GpredictionsDf.join(rpredjoin, gpredjoin("id") === RpredictionsDf("id")) with GpredictionsDf.join(RpredictionsDf, GpredictionsDf("id") === RpredictionsDf("id")) should fix the problem.

    – Leo C
    Nov 26 '18 at 1:46











  • I added val ensemble = GpredictionsDf.join(RpredictionsDf, GpredictionsDf("id") === RpredictionsDf("id")) .join(LpredictionsDf, LpredictionsDf("id") === RpredictionsDf("id")) .join(ratingsDf, ratingsDf("id") === RpredictionsDf("id")) .select("gprediction", "rprediction", "lprediction", "ratings"); It still shows empty dataset

    – Nick
    Nov 26 '18 at 3:01

















Could you please follow the instructions from How to make good reproducible Apache Spark Dataframe examples and include reproducible data and Spark version? Thanks.

– user10465355
Nov 25 '18 at 23:24





Could you please follow the instructions from How to make good reproducible Apache Spark Dataframe examples and include reproducible data and Spark version? Thanks.

– user10465355
Nov 25 '18 at 23:24













I have updated it accordingly

– Nick
Nov 25 '18 at 23:43





I have updated it accordingly

– Nick
Nov 25 '18 at 23:43













All of these including rpredjoin and gpredjoin are dataframes only. There are no hive tables here

– Nick
Nov 26 '18 at 0:59







All of these including rpredjoin and gpredjoin are dataframes only. There are no hive tables here

– Nick
Nov 26 '18 at 0:59















Your joins in Method 1 look correct except that temp views were being mixed with dataframes. Replacing GpredictionsDf.join(rpredjoin, gpredjoin("id") === RpredictionsDf("id")) with GpredictionsDf.join(RpredictionsDf, GpredictionsDf("id") === RpredictionsDf("id")) should fix the problem.

– Leo C
Nov 26 '18 at 1:46





Your joins in Method 1 look correct except that temp views were being mixed with dataframes. Replacing GpredictionsDf.join(rpredjoin, gpredjoin("id") === RpredictionsDf("id")) with GpredictionsDf.join(RpredictionsDf, GpredictionsDf("id") === RpredictionsDf("id")) should fix the problem.

– Leo C
Nov 26 '18 at 1:46













I added val ensemble = GpredictionsDf.join(RpredictionsDf, GpredictionsDf("id") === RpredictionsDf("id")) .join(LpredictionsDf, LpredictionsDf("id") === RpredictionsDf("id")) .join(ratingsDf, ratingsDf("id") === RpredictionsDf("id")) .select("gprediction", "rprediction", "lprediction", "ratings"); It still shows empty dataset

– Nick
Nov 26 '18 at 3:01





I added val ensemble = GpredictionsDf.join(RpredictionsDf, GpredictionsDf("id") === RpredictionsDf("id")) .join(LpredictionsDf, LpredictionsDf("id") === RpredictionsDf("id")) .join(ratingsDf, ratingsDf("id") === RpredictionsDf("id")) .select("gprediction", "rprediction", "lprediction", "ratings"); It still shows empty dataset

– Nick
Nov 26 '18 at 3:01












1 Answer
1






active

oldest

votes


















0














scala> val ratingsDf = Seq((0,1),(1,2),(1,3),(0,4),(0,5),(1,6),(1,7),(1,8),(0,9),(1,10)).toDF("ratings","id")

scala> val GpredictionsDf = Seq((0,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(0,9),(1,10)).toDF("gprediction", "id")

scala> val RpredictionsDf = Seq((0,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10)).toDF("rprediction", "id")

scala> val LpredictionsDf = Seq((0,1),(1,2),(1,3),(0,4),(1,5),(1,6),(1,7),(1,8),(0,9),(1,10)).toDF("lprediction", "id")

scala> val ensembleDf = GpredictionsDf.join(RpredictionsDf, GpredictionsDf("id") === RpredictionsDf("id") ).join(LpredictionsDf, LpredictionsDf("id") === RpredictionsDf("id")).join(ratingsDf, ratingsDf("id") === RpredictionsDf("id")).select("gprediction", "rprediction", "lprediction", "ratings")

scala> ensembleDf.show
+-----------+-----------+-----------+-------+
|gprediction|rprediction|lprediction|ratings|
+-----------+-----------+-----------+-------+
| 0| 0| 0| 0|
| 1| 1| 1| 1|
| 1| 1| 1| 1|
| 1| 1| 0| 0|
| 1| 1| 1| 0|
| 1| 1| 1| 1|
| 1| 1| 1| 1|
| 1| 1| 1| 1|
| 0| 1| 0| 0|
| 1| 1| 1| 1|
+-----------+-----------+-----------+-------+


This is what I tried and it is giving the correct values. I would recommend you to check the DFs you are using for joining.






share|improve this answer























    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53472667%2fdataframes-join-returns-empty-results-in-spark-scala%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    scala> val ratingsDf = Seq((0,1),(1,2),(1,3),(0,4),(0,5),(1,6),(1,7),(1,8),(0,9),(1,10)).toDF("ratings","id")

    scala> val GpredictionsDf = Seq((0,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(0,9),(1,10)).toDF("gprediction", "id")

    scala> val RpredictionsDf = Seq((0,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10)).toDF("rprediction", "id")

    scala> val LpredictionsDf = Seq((0,1),(1,2),(1,3),(0,4),(1,5),(1,6),(1,7),(1,8),(0,9),(1,10)).toDF("lprediction", "id")

    scala> val ensembleDf = GpredictionsDf.join(RpredictionsDf, GpredictionsDf("id") === RpredictionsDf("id") ).join(LpredictionsDf, LpredictionsDf("id") === RpredictionsDf("id")).join(ratingsDf, ratingsDf("id") === RpredictionsDf("id")).select("gprediction", "rprediction", "lprediction", "ratings")

    scala> ensembleDf.show
    +-----------+-----------+-----------+-------+
    |gprediction|rprediction|lprediction|ratings|
    +-----------+-----------+-----------+-------+
    | 0| 0| 0| 0|
    | 1| 1| 1| 1|
    | 1| 1| 1| 1|
    | 1| 1| 0| 0|
    | 1| 1| 1| 0|
    | 1| 1| 1| 1|
    | 1| 1| 1| 1|
    | 1| 1| 1| 1|
    | 0| 1| 0| 0|
    | 1| 1| 1| 1|
    +-----------+-----------+-----------+-------+


    This is what I tried and it is giving the correct values. I would recommend you to check the DFs you are using for joining.






    share|improve this answer




























      0














      scala> val ratingsDf = Seq((0,1),(1,2),(1,3),(0,4),(0,5),(1,6),(1,7),(1,8),(0,9),(1,10)).toDF("ratings","id")

      scala> val GpredictionsDf = Seq((0,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(0,9),(1,10)).toDF("gprediction", "id")

      scala> val RpredictionsDf = Seq((0,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10)).toDF("rprediction", "id")

      scala> val LpredictionsDf = Seq((0,1),(1,2),(1,3),(0,4),(1,5),(1,6),(1,7),(1,8),(0,9),(1,10)).toDF("lprediction", "id")

      scala> val ensembleDf = GpredictionsDf.join(RpredictionsDf, GpredictionsDf("id") === RpredictionsDf("id") ).join(LpredictionsDf, LpredictionsDf("id") === RpredictionsDf("id")).join(ratingsDf, ratingsDf("id") === RpredictionsDf("id")).select("gprediction", "rprediction", "lprediction", "ratings")

      scala> ensembleDf.show
      +-----------+-----------+-----------+-------+
      |gprediction|rprediction|lprediction|ratings|
      +-----------+-----------+-----------+-------+
      | 0| 0| 0| 0|
      | 1| 1| 1| 1|
      | 1| 1| 1| 1|
      | 1| 1| 0| 0|
      | 1| 1| 1| 0|
      | 1| 1| 1| 1|
      | 1| 1| 1| 1|
      | 1| 1| 1| 1|
      | 0| 1| 0| 0|
      | 1| 1| 1| 1|
      +-----------+-----------+-----------+-------+


      This is what I tried and it is giving the correct values. I would recommend you to check the DFs you are using for joining.






      share|improve this answer


























        0












        0








        0







        scala> val ratingsDf = Seq((0,1),(1,2),(1,3),(0,4),(0,5),(1,6),(1,7),(1,8),(0,9),(1,10)).toDF("ratings","id")

        scala> val GpredictionsDf = Seq((0,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(0,9),(1,10)).toDF("gprediction", "id")

        scala> val RpredictionsDf = Seq((0,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10)).toDF("rprediction", "id")

        scala> val LpredictionsDf = Seq((0,1),(1,2),(1,3),(0,4),(1,5),(1,6),(1,7),(1,8),(0,9),(1,10)).toDF("lprediction", "id")

        scala> val ensembleDf = GpredictionsDf.join(RpredictionsDf, GpredictionsDf("id") === RpredictionsDf("id") ).join(LpredictionsDf, LpredictionsDf("id") === RpredictionsDf("id")).join(ratingsDf, ratingsDf("id") === RpredictionsDf("id")).select("gprediction", "rprediction", "lprediction", "ratings")

        scala> ensembleDf.show
        +-----------+-----------+-----------+-------+
        |gprediction|rprediction|lprediction|ratings|
        +-----------+-----------+-----------+-------+
        | 0| 0| 0| 0|
        | 1| 1| 1| 1|
        | 1| 1| 1| 1|
        | 1| 1| 0| 0|
        | 1| 1| 1| 0|
        | 1| 1| 1| 1|
        | 1| 1| 1| 1|
        | 1| 1| 1| 1|
        | 0| 1| 0| 0|
        | 1| 1| 1| 1|
        +-----------+-----------+-----------+-------+


        This is what I tried and it is giving the correct values. I would recommend you to check the DFs you are using for joining.






        share|improve this answer













        scala> val ratingsDf = Seq((0,1),(1,2),(1,3),(0,4),(0,5),(1,6),(1,7),(1,8),(0,9),(1,10)).toDF("ratings","id")

        scala> val GpredictionsDf = Seq((0,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(0,9),(1,10)).toDF("gprediction", "id")

        scala> val RpredictionsDf = Seq((0,1),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10)).toDF("rprediction", "id")

        scala> val LpredictionsDf = Seq((0,1),(1,2),(1,3),(0,4),(1,5),(1,6),(1,7),(1,8),(0,9),(1,10)).toDF("lprediction", "id")

        scala> val ensembleDf = GpredictionsDf.join(RpredictionsDf, GpredictionsDf("id") === RpredictionsDf("id") ).join(LpredictionsDf, LpredictionsDf("id") === RpredictionsDf("id")).join(ratingsDf, ratingsDf("id") === RpredictionsDf("id")).select("gprediction", "rprediction", "lprediction", "ratings")

        scala> ensembleDf.show
        +-----------+-----------+-----------+-------+
        |gprediction|rprediction|lprediction|ratings|
        +-----------+-----------+-----------+-------+
        | 0| 0| 0| 0|
        | 1| 1| 1| 1|
        | 1| 1| 1| 1|
        | 1| 1| 0| 0|
        | 1| 1| 1| 0|
        | 1| 1| 1| 1|
        | 1| 1| 1| 1|
        | 1| 1| 1| 1|
        | 0| 1| 0| 0|
        | 1| 1| 1| 1|
        +-----------+-----------+-----------+-------+


        This is what I tried and it is giving the correct values. I would recommend you to check the DFs you are using for joining.







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 26 '18 at 7:29









        Sathiyan SSathiyan S

        503310




        503310
































            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53472667%2fdataframes-join-returns-empty-results-in-spark-scala%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            404 Error Contact Form 7 ajax form submitting

            How to know if a Active Directory user can login interactively

            Refactoring coordinates for Minecraft Pi buildings written in Python