Unexpected Errors in Naive Bayes Classifier
I was working on my project on a Naive Bayes implementation when I started running into some unexpected issues. Any help?
`
#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
#include <vector>
#include <algorithm>
#include <ctime>
#include <cstdio>
#include <cctype>
#include <cstdlib>
using namespace std;
struct Person
{
int age;
string workclass;
int fnlwgt;
string sex;
int capitalGain;
int capitalLoss;
int hoursPerWeek;
string salary;
void printPerson()
{
cout << age << endl << workclass << endl << fnlwgt;
cout << endl << sex << endl;
cout << capitalGain << endl << capitalLoss;
cout << endl << hoursPerWeek << endl << salary << endl;
}
void getPerson()
{
cout << "nEnter age: ";
cin >> age;
cout << "nEnter work class: ";
getline(cin, workclass);
cout << "nEnter final weight: ";
cin >> fnlwgt;
cout << "nEnter sex: ";
getline(cin, sex);
cout << "nEnter capital gain: ";
cin >> capitalGain;
cout << "nEnter capital loss: ";
cin >> capitalLoss;
cout << "nEnter salary: ";
getline(cin, salary);
}
};
void writeToData()
{
ofstream writer;
writer.open("Dataset.dat", ios::binary | ios::app);
if (!writer)
{
cout << "nError in file open!!";
return;
}
Person p;
while(1)
{
char yn;
p.getPerson();
writer.write((char*)&p, sizeof(p));
cout << "nAre there more records? ";
cin >> yn;
if (yn == 'n' || yn == 'N')
{
break;
}
}
}
string convertInt(int x){
string result;
ostringstream convert;
convert << x;
result = convert.str();
return result;
}
int randNumGenerator(int max){
int num = (rand() % max);
return num;
}
template <typename Predicate>
vector<Person> filter( vector<Person>& testData, Predicate pred) {
vector<Person> out;
copy_if(testData.begin(), testData.end(), back_inserter(out), pred);
return out;
}
vector<Person> positive = filter(testData, [=](const Person& p)
return p.salary == ">50K"
void setData(Person person, string line){
line.erase(remove(line.begin(), line.end(), ','), line.end());
stringstream s(line);
string str;
string workclass;
string sex;
string salary;
int age;
string ageStr;
int fnlwgt;
string fnlwgtStr;
int capitalGain;
string capitalGainStr;
int capitalLoss;
string capitalLossStr;
int hoursPerWeek;
string hoursPerWeekStr;
if(s >> age >> workclass >> fnlwgt >> sex >> capitalGain >> capitalLoss >> hoursPerWeek >> salary)
{
ageStr = convertInt(age);
fnlwgtStr = convertInt(fnlwgt);
capitalGainStr = convertInt(capitalGain);
capitalLossStr = convertInt(capitalLoss);
hoursPerWeekStr = convertInt(hoursPerWeek);
if(ageStr == "?" || workclass == "?" || fnlwgtStr == "?" || sex == "?" || capitalGainStr == "?" || capitalLossStr == "?" || hoursPerWeekStr == "?")
{
}
else{
person.age = age;
person.workclass = workclass;
person.fnlwgt = fnlwgt;
person.sex = sex;
person.capitalGain = capitalGain;
person.capitalLoss = capitalLoss;
person.hoursPerWeek = hoursPerWeek;
person.salary = salary;
testData.push_back(person);
}
}
}
vector<Person> sample(vector<Person> wholeDataSet, int percentage, vector<Person> &testingSet){
int wholeDataSize = wholeDataSet.size();
vector<Person> stratifiedSet;
int limit = (wholeDataSize * percentage) / 100;
int randNum= 0;
vector<bool> numsUsedAlready(wholeDataSize);
for(int i = 0; i < limit; i++){
randNum = randNumGenerator(wholeDataSize);
while(numsUsedAlready[randNum]){
randNum = randNumGenerator(wholeDataSize);
}
numsUsedAlready[randNum] = true;
stratifiedSet.push_back(wholeDataSet[randNum]);
}
for(int i = 0; i < numsUsedAlready.size(); i++){
if(!numsUsedAlready[i]){
testingSet.push_back(wholeDataSet[i]);
}
}
return stratifiedSet;
}
vector<Person> concatVectors(vector<Person> a, vector<Person> b){
vector<Person> ab;
ab.reserve(a.size() + b.size());
ab.insert(ab.end(), a.begin(), a.end());
ab.insert(ab.end(), b.begin(), b.end());
return ab;
}
void compareAttributeInt(int sample, int trained, string salary, int &count, int posOrNeg){
if(sample == trained){
if(salary == ">50K" && posOrNeg == 1){
count++;
}
if(salary == "<=50K" && posOrNeg == 0){
count++;
}
}
}
void compareAttributeStr(string sample, string trained, string salary, int &count, int posOrNeg){
if(sample == trained){
if(salary == ">50K" && posOrNeg == 1){
count++;
}
if(salary == "<=50K" && posOrNeg == 0){
count++;
}
}
}
class Count
{
public:
int pos = 0;
int neg = 0;
void increment(bool flag) {
if (flag) {
pos++;
}
else {
neg++;
}
}
};
float naiveBayesian(vector<Person> trainingSet, vector<Person> testingSet){
float accuracy = 0;
int accuracyCount = 0;
int randNum = 0;
vector<Person> sampleSet;
vector<bool> numsUsedAlready(testingSet.size());
for(int i = 0; i < 20; i++){
randNum = randNumGenerator(testingSet.size());
while(numsUsedAlready[randNum]){
randNum = randNumGenerator(testingSet.size());
}
numsUsedAlready[randNum] = true;
sampleSet.push_back(testingSet[randNum]);
}
int numOver50k = 0;
int numUnder50k = 0;
for(int i = 0; i < trainingSet.size(); i++){
if(trainingSet[i].salary == ">50K"){
numOver50k++;
}
else{
numUnder50k++;
}
}
float probOver50k = (float)numOver50k / trainingSet.size();
float probUnder50k = (float)numUnder50k / trainingSet.size();
float probYes = 0;
float probNo = 0;
float yes= 0;
float no = 0;
template <typename T>
Count compute_count(const Person& sample, const vector<Person>& trainingSet, T Person::*member)
{
Count res;
for (const Person& training : trainingSet) {
if ((sample.*member) == (training.*member)) {
res.increment(training.salary == ">50K");
}
}
return res;
}
for (const Person& sample : sampleSet)
{
vector<Count> counts;
counts.push_back(compute_count(sample, trainingSet, &Person::age));
counts.push_back(compute_count(sample, trainingSet, &Person::workclass));
counts.push_back(compute_count(sample, trainingSet, &Person::fnlwgt));
counts.push_back(compute_count(sample, trainingSet, &Person::capitalGain));
counts.push_back(compute_count(sample, trainingSet, &Person::capitalLoss));
counts.push_back(compute_count(sample, trainingSet, &Person::hoursPerWeek));
}
bool salaryGreaterThan50k = (probYes * probOver50k) > (probNo * probUnder50k);
double probYes = accumulate(counts.begin(), counts.end(), 1.0, [=](double init, const Count& count){
return init * count.pos / numOver50k;
});
double probNo = accumulate(counts.begin(), counts.end(), 1.0, [=](double init, const Count& count){
return init * count.neg / numUnder50k;
});
if ((salaryGreaterThan50k && (sample.salary == ">50K")) || (!salaryGreaterThan50k && !(sample.salary == ">50K")))
++accuracyCount;
accuracy = (float)accuracyCount / 20;
return accuracy;
}
void stratifiedSample(){
srand(time(NULL));
vector<Person> positiveSamples;
vector<Person> negativeSamples;
positiveSamples = setPositive(positiveSamples);
negativeSamples = setNegative(negativeSamples);
vector<Person> posTestingSet10 = positiveSamples;
vector<Person> posTestingSet30 = positiveSamples;
vector<Person> posTestingSet50 = positiveSamples;
vector<Person> posTestingSet70 = positiveSamples;
vector<Person> posTestingSet90 = positiveSamples;
vector<Person> negTestingSet10 = negativeSamples;
vector<Person> negTestingSet30 = negativeSamples;
vector<Person> negTestingSet50 = negativeSamples;
vector<Person> negTestingSet70 = negativeSamples;
vector<Person> negTestingSet90 = negativeSamples;
vector<Person> posStratifiedSet_10;
vector<Person> posTesting_10;
vector<Person> negStratifiedSet_10;
vector<Person> negTesting_10;
vector<Person> posStratifiedSet_30;
vector<Person> posTesting_30;
vector<Person> negStratifiedSet_30;
vector<Person> negTesting_30;
vector<Person> posStratifiedSet_50;
vector<Person> posTesting_50;
vector<Person> negStratifiedSet_50;
vector<Person> negTesting_50;
vector<Person> posStratifiedSet_70;
vector<Person> posTesting_70;
vector<Person> negStratifiedSet_70;
vector<Person> negTesting_70;
vector<Person> posStratifiedSet_90;
vector<Person> posTesting_90;
vector<Person> negStratifiedSet_90;
vector<Person> negTesting_90;
vector<Person> stratifiedSet_10;
vector<Person> stratifiedSet_30;
vector<Person> stratifiedSet_50;
vector<Person> stratifiedSet_70;
vector<Person> stratifiedSet_90;
vector<Person> testingSet_10;
vector<Person> testingSet_30;
vector<Person> testingSet_50;
vector<Person> testingSet_70;
vector<Person> testingSet_90;
posStratifiedSet_10 = sample(posTestingSet10, 10, posTesting_10);
negStratifiedSet_10 = sample(negTestingSet10, 10, negTesting_10);
posStratifiedSet_30 = sample(posTestingSet30, 30, posTesting_30);
negStratifiedSet_30 = sample(negTestingSet30, 30, negTesting_30);
posStratifiedSet_50 = sample(posTestingSet50, 50, posTesting_50);
negStratifiedSet_50 = sample(negTestingSet50, 50, negTesting_50);
posStratifiedSet_70 = sample(posTestingSet70, 70, posTesting_70);
negStratifiedSet_70 = sample(negTestingSet70, 70, negTesting_70);
posStratifiedSet_90 = sample(posTestingSet90, 90, posTesting_90);
negStratifiedSet_90 = sample(negTestingSet90, 90, negTesting_90);
stratifiedSet_10 = concatVectors(posStratifiedSet_10, negStratifiedSet_10);
stratifiedSet_30 = concatVectors(posStratifiedSet_30, negStratifiedSet_30);
stratifiedSet_50 = concatVectors(posStratifiedSet_50, negStratifiedSet_50);
stratifiedSet_70 = concatVectors(posStratifiedSet_70, negStratifiedSet_70);
stratifiedSet_90 = concatVectors(posStratifiedSet_90, negStratifiedSet_90);
testingSet_10 = concatVectors(posTesting_10, negTesting_10);
testingSet_30 = concatVectors(posTesting_30, negTesting_30);
testingSet_50 = concatVectors(posTesting_50, negTesting_50);
testingSet_70 = concatVectors(posTesting_70, negTesting_70);
testingSet_90 = concatVectors(posTesting_90, negTesting_90);
float accuracy10 = 0;
float accuracy30 = 0;
float accuracy50 = 0;
float accuracy70 = 0;
float accuracy90 = 0;
accuracy10 = naiveBayesian(stratifiedSet_10, testingSet_10);
cout << "accuracy for 10%: " << accuracy10 << endl;
accuracy30 = naiveBayesian(stratifiedSet_30, testingSet_30);
cout << "accuracy for 30%: " << accuracy30 << endl;
accuracy50 = naiveBayesian(stratifiedSet_50, testingSet_50);
cout << "accuracy for 50%: " << accuracy50 << endl;
accuracy70 = naiveBayesian(stratifiedSet_70, testingSet_70);
cout << "accuracy for 70%: " << accuracy70 << endl;
accuracy90 = naiveBayesian(stratifiedSet_90, testingSet_90);
cout << "accuracy for 90%: " << accuracy90 << endl;
}
void readInputFile()
{
ifstream reader;
reader.open("Dataset.dat" , ios::binary);
if(!reader)
{
cout << "nError in open";
return;
}
Person p;
reader.read((char*) &p, sizeof(p));
}
int main(int argc, char const *argv)
{
system("CLS");
readInputFile();
stratifiedSample();
return 0;
}
`
I work on the inbuilt gcc compiler for mac and the errors it throws during compilation are:
What have I been doing wrong?
c++ error-handling
New contributor
add a comment |
I was working on my project on a Naive Bayes implementation when I started running into some unexpected issues. Any help?
`
#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
#include <vector>
#include <algorithm>
#include <ctime>
#include <cstdio>
#include <cctype>
#include <cstdlib>
using namespace std;
struct Person
{
int age;
string workclass;
int fnlwgt;
string sex;
int capitalGain;
int capitalLoss;
int hoursPerWeek;
string salary;
void printPerson()
{
cout << age << endl << workclass << endl << fnlwgt;
cout << endl << sex << endl;
cout << capitalGain << endl << capitalLoss;
cout << endl << hoursPerWeek << endl << salary << endl;
}
void getPerson()
{
cout << "nEnter age: ";
cin >> age;
cout << "nEnter work class: ";
getline(cin, workclass);
cout << "nEnter final weight: ";
cin >> fnlwgt;
cout << "nEnter sex: ";
getline(cin, sex);
cout << "nEnter capital gain: ";
cin >> capitalGain;
cout << "nEnter capital loss: ";
cin >> capitalLoss;
cout << "nEnter salary: ";
getline(cin, salary);
}
};
void writeToData()
{
ofstream writer;
writer.open("Dataset.dat", ios::binary | ios::app);
if (!writer)
{
cout << "nError in file open!!";
return;
}
Person p;
while(1)
{
char yn;
p.getPerson();
writer.write((char*)&p, sizeof(p));
cout << "nAre there more records? ";
cin >> yn;
if (yn == 'n' || yn == 'N')
{
break;
}
}
}
string convertInt(int x){
string result;
ostringstream convert;
convert << x;
result = convert.str();
return result;
}
int randNumGenerator(int max){
int num = (rand() % max);
return num;
}
template <typename Predicate>
vector<Person> filter( vector<Person>& testData, Predicate pred) {
vector<Person> out;
copy_if(testData.begin(), testData.end(), back_inserter(out), pred);
return out;
}
vector<Person> positive = filter(testData, [=](const Person& p)
return p.salary == ">50K"
void setData(Person person, string line){
line.erase(remove(line.begin(), line.end(), ','), line.end());
stringstream s(line);
string str;
string workclass;
string sex;
string salary;
int age;
string ageStr;
int fnlwgt;
string fnlwgtStr;
int capitalGain;
string capitalGainStr;
int capitalLoss;
string capitalLossStr;
int hoursPerWeek;
string hoursPerWeekStr;
if(s >> age >> workclass >> fnlwgt >> sex >> capitalGain >> capitalLoss >> hoursPerWeek >> salary)
{
ageStr = convertInt(age);
fnlwgtStr = convertInt(fnlwgt);
capitalGainStr = convertInt(capitalGain);
capitalLossStr = convertInt(capitalLoss);
hoursPerWeekStr = convertInt(hoursPerWeek);
if(ageStr == "?" || workclass == "?" || fnlwgtStr == "?" || sex == "?" || capitalGainStr == "?" || capitalLossStr == "?" || hoursPerWeekStr == "?")
{
}
else{
person.age = age;
person.workclass = workclass;
person.fnlwgt = fnlwgt;
person.sex = sex;
person.capitalGain = capitalGain;
person.capitalLoss = capitalLoss;
person.hoursPerWeek = hoursPerWeek;
person.salary = salary;
testData.push_back(person);
}
}
}
vector<Person> sample(vector<Person> wholeDataSet, int percentage, vector<Person> &testingSet){
int wholeDataSize = wholeDataSet.size();
vector<Person> stratifiedSet;
int limit = (wholeDataSize * percentage) / 100;
int randNum= 0;
vector<bool> numsUsedAlready(wholeDataSize);
for(int i = 0; i < limit; i++){
randNum = randNumGenerator(wholeDataSize);
while(numsUsedAlready[randNum]){
randNum = randNumGenerator(wholeDataSize);
}
numsUsedAlready[randNum] = true;
stratifiedSet.push_back(wholeDataSet[randNum]);
}
for(int i = 0; i < numsUsedAlready.size(); i++){
if(!numsUsedAlready[i]){
testingSet.push_back(wholeDataSet[i]);
}
}
return stratifiedSet;
}
vector<Person> concatVectors(vector<Person> a, vector<Person> b){
vector<Person> ab;
ab.reserve(a.size() + b.size());
ab.insert(ab.end(), a.begin(), a.end());
ab.insert(ab.end(), b.begin(), b.end());
return ab;
}
void compareAttributeInt(int sample, int trained, string salary, int &count, int posOrNeg){
if(sample == trained){
if(salary == ">50K" && posOrNeg == 1){
count++;
}
if(salary == "<=50K" && posOrNeg == 0){
count++;
}
}
}
void compareAttributeStr(string sample, string trained, string salary, int &count, int posOrNeg){
if(sample == trained){
if(salary == ">50K" && posOrNeg == 1){
count++;
}
if(salary == "<=50K" && posOrNeg == 0){
count++;
}
}
}
class Count
{
public:
int pos = 0;
int neg = 0;
void increment(bool flag) {
if (flag) {
pos++;
}
else {
neg++;
}
}
};
float naiveBayesian(vector<Person> trainingSet, vector<Person> testingSet){
float accuracy = 0;
int accuracyCount = 0;
int randNum = 0;
vector<Person> sampleSet;
vector<bool> numsUsedAlready(testingSet.size());
for(int i = 0; i < 20; i++){
randNum = randNumGenerator(testingSet.size());
while(numsUsedAlready[randNum]){
randNum = randNumGenerator(testingSet.size());
}
numsUsedAlready[randNum] = true;
sampleSet.push_back(testingSet[randNum]);
}
int numOver50k = 0;
int numUnder50k = 0;
for(int i = 0; i < trainingSet.size(); i++){
if(trainingSet[i].salary == ">50K"){
numOver50k++;
}
else{
numUnder50k++;
}
}
float probOver50k = (float)numOver50k / trainingSet.size();
float probUnder50k = (float)numUnder50k / trainingSet.size();
float probYes = 0;
float probNo = 0;
float yes= 0;
float no = 0;
template <typename T>
Count compute_count(const Person& sample, const vector<Person>& trainingSet, T Person::*member)
{
Count res;
for (const Person& training : trainingSet) {
if ((sample.*member) == (training.*member)) {
res.increment(training.salary == ">50K");
}
}
return res;
}
for (const Person& sample : sampleSet)
{
vector<Count> counts;
counts.push_back(compute_count(sample, trainingSet, &Person::age));
counts.push_back(compute_count(sample, trainingSet, &Person::workclass));
counts.push_back(compute_count(sample, trainingSet, &Person::fnlwgt));
counts.push_back(compute_count(sample, trainingSet, &Person::capitalGain));
counts.push_back(compute_count(sample, trainingSet, &Person::capitalLoss));
counts.push_back(compute_count(sample, trainingSet, &Person::hoursPerWeek));
}
bool salaryGreaterThan50k = (probYes * probOver50k) > (probNo * probUnder50k);
double probYes = accumulate(counts.begin(), counts.end(), 1.0, [=](double init, const Count& count){
return init * count.pos / numOver50k;
});
double probNo = accumulate(counts.begin(), counts.end(), 1.0, [=](double init, const Count& count){
return init * count.neg / numUnder50k;
});
if ((salaryGreaterThan50k && (sample.salary == ">50K")) || (!salaryGreaterThan50k && !(sample.salary == ">50K")))
++accuracyCount;
accuracy = (float)accuracyCount / 20;
return accuracy;
}
void stratifiedSample(){
srand(time(NULL));
vector<Person> positiveSamples;
vector<Person> negativeSamples;
positiveSamples = setPositive(positiveSamples);
negativeSamples = setNegative(negativeSamples);
vector<Person> posTestingSet10 = positiveSamples;
vector<Person> posTestingSet30 = positiveSamples;
vector<Person> posTestingSet50 = positiveSamples;
vector<Person> posTestingSet70 = positiveSamples;
vector<Person> posTestingSet90 = positiveSamples;
vector<Person> negTestingSet10 = negativeSamples;
vector<Person> negTestingSet30 = negativeSamples;
vector<Person> negTestingSet50 = negativeSamples;
vector<Person> negTestingSet70 = negativeSamples;
vector<Person> negTestingSet90 = negativeSamples;
vector<Person> posStratifiedSet_10;
vector<Person> posTesting_10;
vector<Person> negStratifiedSet_10;
vector<Person> negTesting_10;
vector<Person> posStratifiedSet_30;
vector<Person> posTesting_30;
vector<Person> negStratifiedSet_30;
vector<Person> negTesting_30;
vector<Person> posStratifiedSet_50;
vector<Person> posTesting_50;
vector<Person> negStratifiedSet_50;
vector<Person> negTesting_50;
vector<Person> posStratifiedSet_70;
vector<Person> posTesting_70;
vector<Person> negStratifiedSet_70;
vector<Person> negTesting_70;
vector<Person> posStratifiedSet_90;
vector<Person> posTesting_90;
vector<Person> negStratifiedSet_90;
vector<Person> negTesting_90;
vector<Person> stratifiedSet_10;
vector<Person> stratifiedSet_30;
vector<Person> stratifiedSet_50;
vector<Person> stratifiedSet_70;
vector<Person> stratifiedSet_90;
vector<Person> testingSet_10;
vector<Person> testingSet_30;
vector<Person> testingSet_50;
vector<Person> testingSet_70;
vector<Person> testingSet_90;
posStratifiedSet_10 = sample(posTestingSet10, 10, posTesting_10);
negStratifiedSet_10 = sample(negTestingSet10, 10, negTesting_10);
posStratifiedSet_30 = sample(posTestingSet30, 30, posTesting_30);
negStratifiedSet_30 = sample(negTestingSet30, 30, negTesting_30);
posStratifiedSet_50 = sample(posTestingSet50, 50, posTesting_50);
negStratifiedSet_50 = sample(negTestingSet50, 50, negTesting_50);
posStratifiedSet_70 = sample(posTestingSet70, 70, posTesting_70);
negStratifiedSet_70 = sample(negTestingSet70, 70, negTesting_70);
posStratifiedSet_90 = sample(posTestingSet90, 90, posTesting_90);
negStratifiedSet_90 = sample(negTestingSet90, 90, negTesting_90);
stratifiedSet_10 = concatVectors(posStratifiedSet_10, negStratifiedSet_10);
stratifiedSet_30 = concatVectors(posStratifiedSet_30, negStratifiedSet_30);
stratifiedSet_50 = concatVectors(posStratifiedSet_50, negStratifiedSet_50);
stratifiedSet_70 = concatVectors(posStratifiedSet_70, negStratifiedSet_70);
stratifiedSet_90 = concatVectors(posStratifiedSet_90, negStratifiedSet_90);
testingSet_10 = concatVectors(posTesting_10, negTesting_10);
testingSet_30 = concatVectors(posTesting_30, negTesting_30);
testingSet_50 = concatVectors(posTesting_50, negTesting_50);
testingSet_70 = concatVectors(posTesting_70, negTesting_70);
testingSet_90 = concatVectors(posTesting_90, negTesting_90);
float accuracy10 = 0;
float accuracy30 = 0;
float accuracy50 = 0;
float accuracy70 = 0;
float accuracy90 = 0;
accuracy10 = naiveBayesian(stratifiedSet_10, testingSet_10);
cout << "accuracy for 10%: " << accuracy10 << endl;
accuracy30 = naiveBayesian(stratifiedSet_30, testingSet_30);
cout << "accuracy for 30%: " << accuracy30 << endl;
accuracy50 = naiveBayesian(stratifiedSet_50, testingSet_50);
cout << "accuracy for 50%: " << accuracy50 << endl;
accuracy70 = naiveBayesian(stratifiedSet_70, testingSet_70);
cout << "accuracy for 70%: " << accuracy70 << endl;
accuracy90 = naiveBayesian(stratifiedSet_90, testingSet_90);
cout << "accuracy for 90%: " << accuracy90 << endl;
}
void readInputFile()
{
ifstream reader;
reader.open("Dataset.dat" , ios::binary);
if(!reader)
{
cout << "nError in open";
return;
}
Person p;
reader.read((char*) &p, sizeof(p));
}
int main(int argc, char const *argv)
{
system("CLS");
readInputFile();
stratifiedSample();
return 0;
}
`
I work on the inbuilt gcc compiler for mac and the errors it throws during compilation are:
What have I been doing wrong?
c++ error-handling
New contributor
add a comment |
I was working on my project on a Naive Bayes implementation when I started running into some unexpected issues. Any help?
`
#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
#include <vector>
#include <algorithm>
#include <ctime>
#include <cstdio>
#include <cctype>
#include <cstdlib>
using namespace std;
struct Person
{
int age;
string workclass;
int fnlwgt;
string sex;
int capitalGain;
int capitalLoss;
int hoursPerWeek;
string salary;
void printPerson()
{
cout << age << endl << workclass << endl << fnlwgt;
cout << endl << sex << endl;
cout << capitalGain << endl << capitalLoss;
cout << endl << hoursPerWeek << endl << salary << endl;
}
void getPerson()
{
cout << "nEnter age: ";
cin >> age;
cout << "nEnter work class: ";
getline(cin, workclass);
cout << "nEnter final weight: ";
cin >> fnlwgt;
cout << "nEnter sex: ";
getline(cin, sex);
cout << "nEnter capital gain: ";
cin >> capitalGain;
cout << "nEnter capital loss: ";
cin >> capitalLoss;
cout << "nEnter salary: ";
getline(cin, salary);
}
};
void writeToData()
{
ofstream writer;
writer.open("Dataset.dat", ios::binary | ios::app);
if (!writer)
{
cout << "nError in file open!!";
return;
}
Person p;
while(1)
{
char yn;
p.getPerson();
writer.write((char*)&p, sizeof(p));
cout << "nAre there more records? ";
cin >> yn;
if (yn == 'n' || yn == 'N')
{
break;
}
}
}
string convertInt(int x){
string result;
ostringstream convert;
convert << x;
result = convert.str();
return result;
}
int randNumGenerator(int max){
int num = (rand() % max);
return num;
}
template <typename Predicate>
vector<Person> filter( vector<Person>& testData, Predicate pred) {
vector<Person> out;
copy_if(testData.begin(), testData.end(), back_inserter(out), pred);
return out;
}
vector<Person> positive = filter(testData, [=](const Person& p)
return p.salary == ">50K"
void setData(Person person, string line){
line.erase(remove(line.begin(), line.end(), ','), line.end());
stringstream s(line);
string str;
string workclass;
string sex;
string salary;
int age;
string ageStr;
int fnlwgt;
string fnlwgtStr;
int capitalGain;
string capitalGainStr;
int capitalLoss;
string capitalLossStr;
int hoursPerWeek;
string hoursPerWeekStr;
if(s >> age >> workclass >> fnlwgt >> sex >> capitalGain >> capitalLoss >> hoursPerWeek >> salary)
{
ageStr = convertInt(age);
fnlwgtStr = convertInt(fnlwgt);
capitalGainStr = convertInt(capitalGain);
capitalLossStr = convertInt(capitalLoss);
hoursPerWeekStr = convertInt(hoursPerWeek);
if(ageStr == "?" || workclass == "?" || fnlwgtStr == "?" || sex == "?" || capitalGainStr == "?" || capitalLossStr == "?" || hoursPerWeekStr == "?")
{
}
else{
person.age = age;
person.workclass = workclass;
person.fnlwgt = fnlwgt;
person.sex = sex;
person.capitalGain = capitalGain;
person.capitalLoss = capitalLoss;
person.hoursPerWeek = hoursPerWeek;
person.salary = salary;
testData.push_back(person);
}
}
}
vector<Person> sample(vector<Person> wholeDataSet, int percentage, vector<Person> &testingSet){
int wholeDataSize = wholeDataSet.size();
vector<Person> stratifiedSet;
int limit = (wholeDataSize * percentage) / 100;
int randNum= 0;
vector<bool> numsUsedAlready(wholeDataSize);
for(int i = 0; i < limit; i++){
randNum = randNumGenerator(wholeDataSize);
while(numsUsedAlready[randNum]){
randNum = randNumGenerator(wholeDataSize);
}
numsUsedAlready[randNum] = true;
stratifiedSet.push_back(wholeDataSet[randNum]);
}
for(int i = 0; i < numsUsedAlready.size(); i++){
if(!numsUsedAlready[i]){
testingSet.push_back(wholeDataSet[i]);
}
}
return stratifiedSet;
}
vector<Person> concatVectors(vector<Person> a, vector<Person> b){
vector<Person> ab;
ab.reserve(a.size() + b.size());
ab.insert(ab.end(), a.begin(), a.end());
ab.insert(ab.end(), b.begin(), b.end());
return ab;
}
void compareAttributeInt(int sample, int trained, string salary, int &count, int posOrNeg){
if(sample == trained){
if(salary == ">50K" && posOrNeg == 1){
count++;
}
if(salary == "<=50K" && posOrNeg == 0){
count++;
}
}
}
void compareAttributeStr(string sample, string trained, string salary, int &count, int posOrNeg){
if(sample == trained){
if(salary == ">50K" && posOrNeg == 1){
count++;
}
if(salary == "<=50K" && posOrNeg == 0){
count++;
}
}
}
class Count
{
public:
int pos = 0;
int neg = 0;
void increment(bool flag) {
if (flag) {
pos++;
}
else {
neg++;
}
}
};
float naiveBayesian(vector<Person> trainingSet, vector<Person> testingSet){
float accuracy = 0;
int accuracyCount = 0;
int randNum = 0;
vector<Person> sampleSet;
vector<bool> numsUsedAlready(testingSet.size());
for(int i = 0; i < 20; i++){
randNum = randNumGenerator(testingSet.size());
while(numsUsedAlready[randNum]){
randNum = randNumGenerator(testingSet.size());
}
numsUsedAlready[randNum] = true;
sampleSet.push_back(testingSet[randNum]);
}
int numOver50k = 0;
int numUnder50k = 0;
for(int i = 0; i < trainingSet.size(); i++){
if(trainingSet[i].salary == ">50K"){
numOver50k++;
}
else{
numUnder50k++;
}
}
float probOver50k = (float)numOver50k / trainingSet.size();
float probUnder50k = (float)numUnder50k / trainingSet.size();
float probYes = 0;
float probNo = 0;
float yes= 0;
float no = 0;
template <typename T>
Count compute_count(const Person& sample, const vector<Person>& trainingSet, T Person::*member)
{
Count res;
for (const Person& training : trainingSet) {
if ((sample.*member) == (training.*member)) {
res.increment(training.salary == ">50K");
}
}
return res;
}
for (const Person& sample : sampleSet)
{
vector<Count> counts;
counts.push_back(compute_count(sample, trainingSet, &Person::age));
counts.push_back(compute_count(sample, trainingSet, &Person::workclass));
counts.push_back(compute_count(sample, trainingSet, &Person::fnlwgt));
counts.push_back(compute_count(sample, trainingSet, &Person::capitalGain));
counts.push_back(compute_count(sample, trainingSet, &Person::capitalLoss));
counts.push_back(compute_count(sample, trainingSet, &Person::hoursPerWeek));
}
bool salaryGreaterThan50k = (probYes * probOver50k) > (probNo * probUnder50k);
double probYes = accumulate(counts.begin(), counts.end(), 1.0, [=](double init, const Count& count){
return init * count.pos / numOver50k;
});
double probNo = accumulate(counts.begin(), counts.end(), 1.0, [=](double init, const Count& count){
return init * count.neg / numUnder50k;
});
if ((salaryGreaterThan50k && (sample.salary == ">50K")) || (!salaryGreaterThan50k && !(sample.salary == ">50K")))
++accuracyCount;
accuracy = (float)accuracyCount / 20;
return accuracy;
}
void stratifiedSample(){
srand(time(NULL));
vector<Person> positiveSamples;
vector<Person> negativeSamples;
positiveSamples = setPositive(positiveSamples);
negativeSamples = setNegative(negativeSamples);
vector<Person> posTestingSet10 = positiveSamples;
vector<Person> posTestingSet30 = positiveSamples;
vector<Person> posTestingSet50 = positiveSamples;
vector<Person> posTestingSet70 = positiveSamples;
vector<Person> posTestingSet90 = positiveSamples;
vector<Person> negTestingSet10 = negativeSamples;
vector<Person> negTestingSet30 = negativeSamples;
vector<Person> negTestingSet50 = negativeSamples;
vector<Person> negTestingSet70 = negativeSamples;
vector<Person> negTestingSet90 = negativeSamples;
vector<Person> posStratifiedSet_10;
vector<Person> posTesting_10;
vector<Person> negStratifiedSet_10;
vector<Person> negTesting_10;
vector<Person> posStratifiedSet_30;
vector<Person> posTesting_30;
vector<Person> negStratifiedSet_30;
vector<Person> negTesting_30;
vector<Person> posStratifiedSet_50;
vector<Person> posTesting_50;
vector<Person> negStratifiedSet_50;
vector<Person> negTesting_50;
vector<Person> posStratifiedSet_70;
vector<Person> posTesting_70;
vector<Person> negStratifiedSet_70;
vector<Person> negTesting_70;
vector<Person> posStratifiedSet_90;
vector<Person> posTesting_90;
vector<Person> negStratifiedSet_90;
vector<Person> negTesting_90;
vector<Person> stratifiedSet_10;
vector<Person> stratifiedSet_30;
vector<Person> stratifiedSet_50;
vector<Person> stratifiedSet_70;
vector<Person> stratifiedSet_90;
vector<Person> testingSet_10;
vector<Person> testingSet_30;
vector<Person> testingSet_50;
vector<Person> testingSet_70;
vector<Person> testingSet_90;
posStratifiedSet_10 = sample(posTestingSet10, 10, posTesting_10);
negStratifiedSet_10 = sample(negTestingSet10, 10, negTesting_10);
posStratifiedSet_30 = sample(posTestingSet30, 30, posTesting_30);
negStratifiedSet_30 = sample(negTestingSet30, 30, negTesting_30);
posStratifiedSet_50 = sample(posTestingSet50, 50, posTesting_50);
negStratifiedSet_50 = sample(negTestingSet50, 50, negTesting_50);
posStratifiedSet_70 = sample(posTestingSet70, 70, posTesting_70);
negStratifiedSet_70 = sample(negTestingSet70, 70, negTesting_70);
posStratifiedSet_90 = sample(posTestingSet90, 90, posTesting_90);
negStratifiedSet_90 = sample(negTestingSet90, 90, negTesting_90);
stratifiedSet_10 = concatVectors(posStratifiedSet_10, negStratifiedSet_10);
stratifiedSet_30 = concatVectors(posStratifiedSet_30, negStratifiedSet_30);
stratifiedSet_50 = concatVectors(posStratifiedSet_50, negStratifiedSet_50);
stratifiedSet_70 = concatVectors(posStratifiedSet_70, negStratifiedSet_70);
stratifiedSet_90 = concatVectors(posStratifiedSet_90, negStratifiedSet_90);
testingSet_10 = concatVectors(posTesting_10, negTesting_10);
testingSet_30 = concatVectors(posTesting_30, negTesting_30);
testingSet_50 = concatVectors(posTesting_50, negTesting_50);
testingSet_70 = concatVectors(posTesting_70, negTesting_70);
testingSet_90 = concatVectors(posTesting_90, negTesting_90);
float accuracy10 = 0;
float accuracy30 = 0;
float accuracy50 = 0;
float accuracy70 = 0;
float accuracy90 = 0;
accuracy10 = naiveBayesian(stratifiedSet_10, testingSet_10);
cout << "accuracy for 10%: " << accuracy10 << endl;
accuracy30 = naiveBayesian(stratifiedSet_30, testingSet_30);
cout << "accuracy for 30%: " << accuracy30 << endl;
accuracy50 = naiveBayesian(stratifiedSet_50, testingSet_50);
cout << "accuracy for 50%: " << accuracy50 << endl;
accuracy70 = naiveBayesian(stratifiedSet_70, testingSet_70);
cout << "accuracy for 70%: " << accuracy70 << endl;
accuracy90 = naiveBayesian(stratifiedSet_90, testingSet_90);
cout << "accuracy for 90%: " << accuracy90 << endl;
}
void readInputFile()
{
ifstream reader;
reader.open("Dataset.dat" , ios::binary);
if(!reader)
{
cout << "nError in open";
return;
}
Person p;
reader.read((char*) &p, sizeof(p));
}
int main(int argc, char const *argv)
{
system("CLS");
readInputFile();
stratifiedSample();
return 0;
}
`
I work on the inbuilt gcc compiler for mac and the errors it throws during compilation are:
What have I been doing wrong?
c++ error-handling
New contributor
I was working on my project on a Naive Bayes implementation when I started running into some unexpected issues. Any help?
`
#include <iostream>
#include <fstream>
#include <string>
#include <sstream>
#include <vector>
#include <algorithm>
#include <ctime>
#include <cstdio>
#include <cctype>
#include <cstdlib>
using namespace std;
struct Person
{
int age;
string workclass;
int fnlwgt;
string sex;
int capitalGain;
int capitalLoss;
int hoursPerWeek;
string salary;
void printPerson()
{
cout << age << endl << workclass << endl << fnlwgt;
cout << endl << sex << endl;
cout << capitalGain << endl << capitalLoss;
cout << endl << hoursPerWeek << endl << salary << endl;
}
void getPerson()
{
cout << "nEnter age: ";
cin >> age;
cout << "nEnter work class: ";
getline(cin, workclass);
cout << "nEnter final weight: ";
cin >> fnlwgt;
cout << "nEnter sex: ";
getline(cin, sex);
cout << "nEnter capital gain: ";
cin >> capitalGain;
cout << "nEnter capital loss: ";
cin >> capitalLoss;
cout << "nEnter salary: ";
getline(cin, salary);
}
};
void writeToData()
{
ofstream writer;
writer.open("Dataset.dat", ios::binary | ios::app);
if (!writer)
{
cout << "nError in file open!!";
return;
}
Person p;
while(1)
{
char yn;
p.getPerson();
writer.write((char*)&p, sizeof(p));
cout << "nAre there more records? ";
cin >> yn;
if (yn == 'n' || yn == 'N')
{
break;
}
}
}
string convertInt(int x){
string result;
ostringstream convert;
convert << x;
result = convert.str();
return result;
}
int randNumGenerator(int max){
int num = (rand() % max);
return num;
}
template <typename Predicate>
vector<Person> filter( vector<Person>& testData, Predicate pred) {
vector<Person> out;
copy_if(testData.begin(), testData.end(), back_inserter(out), pred);
return out;
}
vector<Person> positive = filter(testData, [=](const Person& p)
return p.salary == ">50K"
void setData(Person person, string line){
line.erase(remove(line.begin(), line.end(), ','), line.end());
stringstream s(line);
string str;
string workclass;
string sex;
string salary;
int age;
string ageStr;
int fnlwgt;
string fnlwgtStr;
int capitalGain;
string capitalGainStr;
int capitalLoss;
string capitalLossStr;
int hoursPerWeek;
string hoursPerWeekStr;
if(s >> age >> workclass >> fnlwgt >> sex >> capitalGain >> capitalLoss >> hoursPerWeek >> salary)
{
ageStr = convertInt(age);
fnlwgtStr = convertInt(fnlwgt);
capitalGainStr = convertInt(capitalGain);
capitalLossStr = convertInt(capitalLoss);
hoursPerWeekStr = convertInt(hoursPerWeek);
if(ageStr == "?" || workclass == "?" || fnlwgtStr == "?" || sex == "?" || capitalGainStr == "?" || capitalLossStr == "?" || hoursPerWeekStr == "?")
{
}
else{
person.age = age;
person.workclass = workclass;
person.fnlwgt = fnlwgt;
person.sex = sex;
person.capitalGain = capitalGain;
person.capitalLoss = capitalLoss;
person.hoursPerWeek = hoursPerWeek;
person.salary = salary;
testData.push_back(person);
}
}
}
vector<Person> sample(vector<Person> wholeDataSet, int percentage, vector<Person> &testingSet){
int wholeDataSize = wholeDataSet.size();
vector<Person> stratifiedSet;
int limit = (wholeDataSize * percentage) / 100;
int randNum= 0;
vector<bool> numsUsedAlready(wholeDataSize);
for(int i = 0; i < limit; i++){
randNum = randNumGenerator(wholeDataSize);
while(numsUsedAlready[randNum]){
randNum = randNumGenerator(wholeDataSize);
}
numsUsedAlready[randNum] = true;
stratifiedSet.push_back(wholeDataSet[randNum]);
}
for(int i = 0; i < numsUsedAlready.size(); i++){
if(!numsUsedAlready[i]){
testingSet.push_back(wholeDataSet[i]);
}
}
return stratifiedSet;
}
vector<Person> concatVectors(vector<Person> a, vector<Person> b){
vector<Person> ab;
ab.reserve(a.size() + b.size());
ab.insert(ab.end(), a.begin(), a.end());
ab.insert(ab.end(), b.begin(), b.end());
return ab;
}
void compareAttributeInt(int sample, int trained, string salary, int &count, int posOrNeg){
if(sample == trained){
if(salary == ">50K" && posOrNeg == 1){
count++;
}
if(salary == "<=50K" && posOrNeg == 0){
count++;
}
}
}
void compareAttributeStr(string sample, string trained, string salary, int &count, int posOrNeg){
if(sample == trained){
if(salary == ">50K" && posOrNeg == 1){
count++;
}
if(salary == "<=50K" && posOrNeg == 0){
count++;
}
}
}
class Count
{
public:
int pos = 0;
int neg = 0;
void increment(bool flag) {
if (flag) {
pos++;
}
else {
neg++;
}
}
};
float naiveBayesian(vector<Person> trainingSet, vector<Person> testingSet){
float accuracy = 0;
int accuracyCount = 0;
int randNum = 0;
vector<Person> sampleSet;
vector<bool> numsUsedAlready(testingSet.size());
for(int i = 0; i < 20; i++){
randNum = randNumGenerator(testingSet.size());
while(numsUsedAlready[randNum]){
randNum = randNumGenerator(testingSet.size());
}
numsUsedAlready[randNum] = true;
sampleSet.push_back(testingSet[randNum]);
}
int numOver50k = 0;
int numUnder50k = 0;
for(int i = 0; i < trainingSet.size(); i++){
if(trainingSet[i].salary == ">50K"){
numOver50k++;
}
else{
numUnder50k++;
}
}
float probOver50k = (float)numOver50k / trainingSet.size();
float probUnder50k = (float)numUnder50k / trainingSet.size();
float probYes = 0;
float probNo = 0;
float yes= 0;
float no = 0;
template <typename T>
Count compute_count(const Person& sample, const vector<Person>& trainingSet, T Person::*member)
{
Count res;
for (const Person& training : trainingSet) {
if ((sample.*member) == (training.*member)) {
res.increment(training.salary == ">50K");
}
}
return res;
}
for (const Person& sample : sampleSet)
{
vector<Count> counts;
counts.push_back(compute_count(sample, trainingSet, &Person::age));
counts.push_back(compute_count(sample, trainingSet, &Person::workclass));
counts.push_back(compute_count(sample, trainingSet, &Person::fnlwgt));
counts.push_back(compute_count(sample, trainingSet, &Person::capitalGain));
counts.push_back(compute_count(sample, trainingSet, &Person::capitalLoss));
counts.push_back(compute_count(sample, trainingSet, &Person::hoursPerWeek));
}
bool salaryGreaterThan50k = (probYes * probOver50k) > (probNo * probUnder50k);
double probYes = accumulate(counts.begin(), counts.end(), 1.0, [=](double init, const Count& count){
return init * count.pos / numOver50k;
});
double probNo = accumulate(counts.begin(), counts.end(), 1.0, [=](double init, const Count& count){
return init * count.neg / numUnder50k;
});
if ((salaryGreaterThan50k && (sample.salary == ">50K")) || (!salaryGreaterThan50k && !(sample.salary == ">50K")))
++accuracyCount;
accuracy = (float)accuracyCount / 20;
return accuracy;
}
void stratifiedSample(){
srand(time(NULL));
vector<Person> positiveSamples;
vector<Person> negativeSamples;
positiveSamples = setPositive(positiveSamples);
negativeSamples = setNegative(negativeSamples);
vector<Person> posTestingSet10 = positiveSamples;
vector<Person> posTestingSet30 = positiveSamples;
vector<Person> posTestingSet50 = positiveSamples;
vector<Person> posTestingSet70 = positiveSamples;
vector<Person> posTestingSet90 = positiveSamples;
vector<Person> negTestingSet10 = negativeSamples;
vector<Person> negTestingSet30 = negativeSamples;
vector<Person> negTestingSet50 = negativeSamples;
vector<Person> negTestingSet70 = negativeSamples;
vector<Person> negTestingSet90 = negativeSamples;
vector<Person> posStratifiedSet_10;
vector<Person> posTesting_10;
vector<Person> negStratifiedSet_10;
vector<Person> negTesting_10;
vector<Person> posStratifiedSet_30;
vector<Person> posTesting_30;
vector<Person> negStratifiedSet_30;
vector<Person> negTesting_30;
vector<Person> posStratifiedSet_50;
vector<Person> posTesting_50;
vector<Person> negStratifiedSet_50;
vector<Person> negTesting_50;
vector<Person> posStratifiedSet_70;
vector<Person> posTesting_70;
vector<Person> negStratifiedSet_70;
vector<Person> negTesting_70;
vector<Person> posStratifiedSet_90;
vector<Person> posTesting_90;
vector<Person> negStratifiedSet_90;
vector<Person> negTesting_90;
vector<Person> stratifiedSet_10;
vector<Person> stratifiedSet_30;
vector<Person> stratifiedSet_50;
vector<Person> stratifiedSet_70;
vector<Person> stratifiedSet_90;
vector<Person> testingSet_10;
vector<Person> testingSet_30;
vector<Person> testingSet_50;
vector<Person> testingSet_70;
vector<Person> testingSet_90;
posStratifiedSet_10 = sample(posTestingSet10, 10, posTesting_10);
negStratifiedSet_10 = sample(negTestingSet10, 10, negTesting_10);
posStratifiedSet_30 = sample(posTestingSet30, 30, posTesting_30);
negStratifiedSet_30 = sample(negTestingSet30, 30, negTesting_30);
posStratifiedSet_50 = sample(posTestingSet50, 50, posTesting_50);
negStratifiedSet_50 = sample(negTestingSet50, 50, negTesting_50);
posStratifiedSet_70 = sample(posTestingSet70, 70, posTesting_70);
negStratifiedSet_70 = sample(negTestingSet70, 70, negTesting_70);
posStratifiedSet_90 = sample(posTestingSet90, 90, posTesting_90);
negStratifiedSet_90 = sample(negTestingSet90, 90, negTesting_90);
stratifiedSet_10 = concatVectors(posStratifiedSet_10, negStratifiedSet_10);
stratifiedSet_30 = concatVectors(posStratifiedSet_30, negStratifiedSet_30);
stratifiedSet_50 = concatVectors(posStratifiedSet_50, negStratifiedSet_50);
stratifiedSet_70 = concatVectors(posStratifiedSet_70, negStratifiedSet_70);
stratifiedSet_90 = concatVectors(posStratifiedSet_90, negStratifiedSet_90);
testingSet_10 = concatVectors(posTesting_10, negTesting_10);
testingSet_30 = concatVectors(posTesting_30, negTesting_30);
testingSet_50 = concatVectors(posTesting_50, negTesting_50);
testingSet_70 = concatVectors(posTesting_70, negTesting_70);
testingSet_90 = concatVectors(posTesting_90, negTesting_90);
float accuracy10 = 0;
float accuracy30 = 0;
float accuracy50 = 0;
float accuracy70 = 0;
float accuracy90 = 0;
accuracy10 = naiveBayesian(stratifiedSet_10, testingSet_10);
cout << "accuracy for 10%: " << accuracy10 << endl;
accuracy30 = naiveBayesian(stratifiedSet_30, testingSet_30);
cout << "accuracy for 30%: " << accuracy30 << endl;
accuracy50 = naiveBayesian(stratifiedSet_50, testingSet_50);
cout << "accuracy for 50%: " << accuracy50 << endl;
accuracy70 = naiveBayesian(stratifiedSet_70, testingSet_70);
cout << "accuracy for 70%: " << accuracy70 << endl;
accuracy90 = naiveBayesian(stratifiedSet_90, testingSet_90);
cout << "accuracy for 90%: " << accuracy90 << endl;
}
void readInputFile()
{
ifstream reader;
reader.open("Dataset.dat" , ios::binary);
if(!reader)
{
cout << "nError in open";
return;
}
Person p;
reader.read((char*) &p, sizeof(p));
}
int main(int argc, char const *argv)
{
system("CLS");
readInputFile();
stratifiedSample();
return 0;
}
`
I work on the inbuilt gcc compiler for mac and the errors it throws during compilation are:
What have I been doing wrong?
c++ error-handling
c++ error-handling
New contributor
New contributor
New contributor
asked 3 mins ago
S-A117
1
1
New contributor
New contributor
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "196"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
S-A117 is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210185%2funexpected-errors-in-naive-bayes-classifier%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
S-A117 is a new contributor. Be nice, and check out our Code of Conduct.
S-A117 is a new contributor. Be nice, and check out our Code of Conduct.
S-A117 is a new contributor. Be nice, and check out our Code of Conduct.
S-A117 is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210185%2funexpected-errors-in-naive-bayes-classifier%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown