improving a pipeline in python when that is so slow for big files
I have a text file like this example:
small example:
>chr12:86512-86521
CGGCCAAAG
>chr16:96990-96999
CTTTCATTT
>chr16:97016-97025
TTTTGATTA
>chr16:97068-97077
ATTTAGGGA
this file is divided into different parts, every part has 2 lines. the line which starts with >
is ID and the 2nd line is a sequence of letters and the letters are A, T, C or G
and also the length of each sequence is 9 so, for every sequence of letters there are 9 positions
. I want to get the frequency of the 4 mentioned letters in every position (we have 9 positions).
here is the expected output for the small example:
expected output:
one = {'T': 1, 'A': 1, 'C': 2, 'G': 0}
two = {'T': 3, 'A': 0, 'C': 0, 'G': 1}
three = {'T': 3, 'A': 0, 'C': 0, 'G': 1}
four = {'T': 3, 'A': 0, 'C': 1, 'G': 0}
five = {'T': 0, 'A': 1, 'C': 2, 'G': 1}
six = {'T': 0, 'A': 3, 'C': 0, 'G': 1}
seven = {'T': 2, 'A': 1, 'C': 0, 'G': 1}
eight = {'T': 2, 'A': 1, 'C': 0, 'G': 1}
nine = ({'T': 1, 'A': 2, 'C': 0, 'G': 1}
I am doing that in python using the following command. this command has 3 steps. steps 1 and 2 work fine but would you help me to improve the step 3 which made this pipeline so slow for big files.
step1
: to parse the file into a comma-separated file
def fasta_to_textfile(filename, outfile):
with open(filename) as f, open(outfile, 'w') as outfile:
header = sequence = None
out = csv.writer(outfile, delimiter=',')
for line in f:
if line.startswith('>'):
if header:
entry = header + [''.join(sequence)]
out.writerow(entry)
header = line.strip('>n').split('|')
sequence =
else:
sequence.append(line.strip())
if header:
entry = header + [''.join(sequence)]
out.writerow(entry)
step2
: comma-separated file to a python dictionary
def file_to_dict(filename):
f = open(filename, 'r')
answer = {}
for line in f:
k, v = line.strip().split(',')
answer[k.strip()] = v.strip()
return answer
to print functiones from step1 and 2:
a = fasta_to_textfile('infile.txt', 'out.txt')
d = file_to_dict('out.txt')
step3
: to get the frequency
one=
two=
three=
four=
five=
six=
seven=
eight=
nine=
mylist = d.values()
for seq in mylist:
one.append(seq[0])
two.append(seq[1])
se.append(seq[2])
four.append(seq[3])
five.append(seq[4])
six.append(seq[5])
seven.append(seq[6])
eight.append(seq[7])
nine.append(seq[8])
from collections import Counter
one=Counter(one)
two=Counter(two)
three=Counter(three)
four=Counter(four)
five=Counter(five)
python
New contributor
add a comment |
I have a text file like this example:
small example:
>chr12:86512-86521
CGGCCAAAG
>chr16:96990-96999
CTTTCATTT
>chr16:97016-97025
TTTTGATTA
>chr16:97068-97077
ATTTAGGGA
this file is divided into different parts, every part has 2 lines. the line which starts with >
is ID and the 2nd line is a sequence of letters and the letters are A, T, C or G
and also the length of each sequence is 9 so, for every sequence of letters there are 9 positions
. I want to get the frequency of the 4 mentioned letters in every position (we have 9 positions).
here is the expected output for the small example:
expected output:
one = {'T': 1, 'A': 1, 'C': 2, 'G': 0}
two = {'T': 3, 'A': 0, 'C': 0, 'G': 1}
three = {'T': 3, 'A': 0, 'C': 0, 'G': 1}
four = {'T': 3, 'A': 0, 'C': 1, 'G': 0}
five = {'T': 0, 'A': 1, 'C': 2, 'G': 1}
six = {'T': 0, 'A': 3, 'C': 0, 'G': 1}
seven = {'T': 2, 'A': 1, 'C': 0, 'G': 1}
eight = {'T': 2, 'A': 1, 'C': 0, 'G': 1}
nine = ({'T': 1, 'A': 2, 'C': 0, 'G': 1}
I am doing that in python using the following command. this command has 3 steps. steps 1 and 2 work fine but would you help me to improve the step 3 which made this pipeline so slow for big files.
step1
: to parse the file into a comma-separated file
def fasta_to_textfile(filename, outfile):
with open(filename) as f, open(outfile, 'w') as outfile:
header = sequence = None
out = csv.writer(outfile, delimiter=',')
for line in f:
if line.startswith('>'):
if header:
entry = header + [''.join(sequence)]
out.writerow(entry)
header = line.strip('>n').split('|')
sequence =
else:
sequence.append(line.strip())
if header:
entry = header + [''.join(sequence)]
out.writerow(entry)
step2
: comma-separated file to a python dictionary
def file_to_dict(filename):
f = open(filename, 'r')
answer = {}
for line in f:
k, v = line.strip().split(',')
answer[k.strip()] = v.strip()
return answer
to print functiones from step1 and 2:
a = fasta_to_textfile('infile.txt', 'out.txt')
d = file_to_dict('out.txt')
step3
: to get the frequency
one=
two=
three=
four=
five=
six=
seven=
eight=
nine=
mylist = d.values()
for seq in mylist:
one.append(seq[0])
two.append(seq[1])
se.append(seq[2])
four.append(seq[3])
five.append(seq[4])
six.append(seq[5])
seven.append(seq[6])
eight.append(seq[7])
nine.append(seq[8])
from collections import Counter
one=Counter(one)
two=Counter(two)
three=Counter(three)
four=Counter(four)
five=Counter(five)
python
New contributor
add a comment |
I have a text file like this example:
small example:
>chr12:86512-86521
CGGCCAAAG
>chr16:96990-96999
CTTTCATTT
>chr16:97016-97025
TTTTGATTA
>chr16:97068-97077
ATTTAGGGA
this file is divided into different parts, every part has 2 lines. the line which starts with >
is ID and the 2nd line is a sequence of letters and the letters are A, T, C or G
and also the length of each sequence is 9 so, for every sequence of letters there are 9 positions
. I want to get the frequency of the 4 mentioned letters in every position (we have 9 positions).
here is the expected output for the small example:
expected output:
one = {'T': 1, 'A': 1, 'C': 2, 'G': 0}
two = {'T': 3, 'A': 0, 'C': 0, 'G': 1}
three = {'T': 3, 'A': 0, 'C': 0, 'G': 1}
four = {'T': 3, 'A': 0, 'C': 1, 'G': 0}
five = {'T': 0, 'A': 1, 'C': 2, 'G': 1}
six = {'T': 0, 'A': 3, 'C': 0, 'G': 1}
seven = {'T': 2, 'A': 1, 'C': 0, 'G': 1}
eight = {'T': 2, 'A': 1, 'C': 0, 'G': 1}
nine = ({'T': 1, 'A': 2, 'C': 0, 'G': 1}
I am doing that in python using the following command. this command has 3 steps. steps 1 and 2 work fine but would you help me to improve the step 3 which made this pipeline so slow for big files.
step1
: to parse the file into a comma-separated file
def fasta_to_textfile(filename, outfile):
with open(filename) as f, open(outfile, 'w') as outfile:
header = sequence = None
out = csv.writer(outfile, delimiter=',')
for line in f:
if line.startswith('>'):
if header:
entry = header + [''.join(sequence)]
out.writerow(entry)
header = line.strip('>n').split('|')
sequence =
else:
sequence.append(line.strip())
if header:
entry = header + [''.join(sequence)]
out.writerow(entry)
step2
: comma-separated file to a python dictionary
def file_to_dict(filename):
f = open(filename, 'r')
answer = {}
for line in f:
k, v = line.strip().split(',')
answer[k.strip()] = v.strip()
return answer
to print functiones from step1 and 2:
a = fasta_to_textfile('infile.txt', 'out.txt')
d = file_to_dict('out.txt')
step3
: to get the frequency
one=
two=
three=
four=
five=
six=
seven=
eight=
nine=
mylist = d.values()
for seq in mylist:
one.append(seq[0])
two.append(seq[1])
se.append(seq[2])
four.append(seq[3])
five.append(seq[4])
six.append(seq[5])
seven.append(seq[6])
eight.append(seq[7])
nine.append(seq[8])
from collections import Counter
one=Counter(one)
two=Counter(two)
three=Counter(three)
four=Counter(four)
five=Counter(five)
python
New contributor
I have a text file like this example:
small example:
>chr12:86512-86521
CGGCCAAAG
>chr16:96990-96999
CTTTCATTT
>chr16:97016-97025
TTTTGATTA
>chr16:97068-97077
ATTTAGGGA
this file is divided into different parts, every part has 2 lines. the line which starts with >
is ID and the 2nd line is a sequence of letters and the letters are A, T, C or G
and also the length of each sequence is 9 so, for every sequence of letters there are 9 positions
. I want to get the frequency of the 4 mentioned letters in every position (we have 9 positions).
here is the expected output for the small example:
expected output:
one = {'T': 1, 'A': 1, 'C': 2, 'G': 0}
two = {'T': 3, 'A': 0, 'C': 0, 'G': 1}
three = {'T': 3, 'A': 0, 'C': 0, 'G': 1}
four = {'T': 3, 'A': 0, 'C': 1, 'G': 0}
five = {'T': 0, 'A': 1, 'C': 2, 'G': 1}
six = {'T': 0, 'A': 3, 'C': 0, 'G': 1}
seven = {'T': 2, 'A': 1, 'C': 0, 'G': 1}
eight = {'T': 2, 'A': 1, 'C': 0, 'G': 1}
nine = ({'T': 1, 'A': 2, 'C': 0, 'G': 1}
I am doing that in python using the following command. this command has 3 steps. steps 1 and 2 work fine but would you help me to improve the step 3 which made this pipeline so slow for big files.
step1
: to parse the file into a comma-separated file
def fasta_to_textfile(filename, outfile):
with open(filename) as f, open(outfile, 'w') as outfile:
header = sequence = None
out = csv.writer(outfile, delimiter=',')
for line in f:
if line.startswith('>'):
if header:
entry = header + [''.join(sequence)]
out.writerow(entry)
header = line.strip('>n').split('|')
sequence =
else:
sequence.append(line.strip())
if header:
entry = header + [''.join(sequence)]
out.writerow(entry)
step2
: comma-separated file to a python dictionary
def file_to_dict(filename):
f = open(filename, 'r')
answer = {}
for line in f:
k, v = line.strip().split(',')
answer[k.strip()] = v.strip()
return answer
to print functiones from step1 and 2:
a = fasta_to_textfile('infile.txt', 'out.txt')
d = file_to_dict('out.txt')
step3
: to get the frequency
one=
two=
three=
four=
five=
six=
seven=
eight=
nine=
mylist = d.values()
for seq in mylist:
one.append(seq[0])
two.append(seq[1])
se.append(seq[2])
four.append(seq[3])
five.append(seq[4])
six.append(seq[5])
seven.append(seq[6])
eight.append(seq[7])
nine.append(seq[8])
from collections import Counter
one=Counter(one)
two=Counter(two)
three=Counter(three)
four=Counter(four)
five=Counter(five)
python
python
New contributor
New contributor
New contributor
asked 10 mins ago
user188727
1
1
New contributor
New contributor
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "196"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
user188727 is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210184%2fimproving-a-pipeline-in-python-when-that-is-so-slow-for-big-files%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
user188727 is a new contributor. Be nice, and check out our Code of Conduct.
user188727 is a new contributor. Be nice, and check out our Code of Conduct.
user188727 is a new contributor. Be nice, and check out our Code of Conduct.
user188727 is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210184%2fimproving-a-pipeline-in-python-when-that-is-so-slow-for-big-files%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown