lyapunov spectrum of lorenz oscillator
Here is my try to calculate lyapunov spectrum of lorenz oscillator. I followed step by step from boost library program, but I can not reproduce the results.
import numpy as np
import pylab as pl
from copy import copy
from numpy import dot, log
from numpy.linalg import norm
from scipy.integrate import odeint
from sys import exit
# system with out perturbation----------------------------#
def lorenz(x0, t):
x, y, z = x0
dxdt = s * (y - x)
dydt = x * (r - z) - y
dzdt = x * y - b * z
return [dxdt, dydt, dzdt]
#system with perturbation---------------------------------#
def lorenz_with_lyap(x0, t):
x,y,z = x0[:3]
dxdt = [0.0]*12
dxdt[0] = s * (y - x)
dxdt[1] = x * (r - z) - y
dxdt[2] = x * y - b * z
# this is jacobian*Y
for l in range(3):
m = 3*l+3
dxdt[m] = -s * x0[m] + s * x0[m+1]
dxdt[m+1] = (r - z) * x0[m] -1.0 * x0[m+1] -1.0 * x * x0[m+2]
dxdt[m+2] = y * x0[m] + x * x0[m+1] -b * x0[m+2]
return dxdt
#---------------------------------------------------------#
def gram_schmidt(x0, lyap, t):
# vectors
a = x0[3: 6]
b = x0[6: 9]
c = x0[9:12]
v1 = copy(a)
v2 = b - dot(v1, b)/dot(v1, v1) * v1
v3 = c - dot(v1, c)/dot(v1, v1) * v1 -dot(v2, c)/dot(v2, v2) * v2
znorm = [0] * 3
znorm[0] = norm(v1)
znorm[1] = norm(v2)
znorm[2] = norm(v3)
# normalize vectors
x0[3:6 ] = v1/znorm[0]
x0[6:9 ] = v2/znorm[1]
x0[9:12] = v3/znorm[2]
for i in range(3):
lyap[i] += log(znorm[i])/t
# parameters
s = 10.0
r = 28.0
b = 8.0/3.0
stept = 1.0
dt = 0.01
n = 3
lyap = [0.0]*n
x0 = np.zeros(12)
initial_condition = [10.0, 10.0, 5.0]
x0[:3] = copy(initial_condition)
for i in range(3):
x0[n+n*i+i]=1.0
# integrate trantient time
t = np.arange(0, 10, 0.1)
sol = odeint(lorenz, initial_condition, t)
x0[:3] = copy(sol[-1,:]) # new initial condition
ti = t[-1]
tf = ti + stept
for i in range(10):
t_interval = np.arange(ti, tf, dt)
sol = odeint(lorenz_with_lyap, x0, t_interval)
x0 = copy(sol[-1,:])
gram_schmidt(x0, lyap, stept)
for xx in lyap:
print "%15.9f" % xx,
print ""
ti = tf
tf = ti+stept
I think the problem is in gram_schmidt
function. Is the question clear?
Thank you for any guide.
python c++
add a comment |
Here is my try to calculate lyapunov spectrum of lorenz oscillator. I followed step by step from boost library program, but I can not reproduce the results.
import numpy as np
import pylab as pl
from copy import copy
from numpy import dot, log
from numpy.linalg import norm
from scipy.integrate import odeint
from sys import exit
# system with out perturbation----------------------------#
def lorenz(x0, t):
x, y, z = x0
dxdt = s * (y - x)
dydt = x * (r - z) - y
dzdt = x * y - b * z
return [dxdt, dydt, dzdt]
#system with perturbation---------------------------------#
def lorenz_with_lyap(x0, t):
x,y,z = x0[:3]
dxdt = [0.0]*12
dxdt[0] = s * (y - x)
dxdt[1] = x * (r - z) - y
dxdt[2] = x * y - b * z
# this is jacobian*Y
for l in range(3):
m = 3*l+3
dxdt[m] = -s * x0[m] + s * x0[m+1]
dxdt[m+1] = (r - z) * x0[m] -1.0 * x0[m+1] -1.0 * x * x0[m+2]
dxdt[m+2] = y * x0[m] + x * x0[m+1] -b * x0[m+2]
return dxdt
#---------------------------------------------------------#
def gram_schmidt(x0, lyap, t):
# vectors
a = x0[3: 6]
b = x0[6: 9]
c = x0[9:12]
v1 = copy(a)
v2 = b - dot(v1, b)/dot(v1, v1) * v1
v3 = c - dot(v1, c)/dot(v1, v1) * v1 -dot(v2, c)/dot(v2, v2) * v2
znorm = [0] * 3
znorm[0] = norm(v1)
znorm[1] = norm(v2)
znorm[2] = norm(v3)
# normalize vectors
x0[3:6 ] = v1/znorm[0]
x0[6:9 ] = v2/znorm[1]
x0[9:12] = v3/znorm[2]
for i in range(3):
lyap[i] += log(znorm[i])/t
# parameters
s = 10.0
r = 28.0
b = 8.0/3.0
stept = 1.0
dt = 0.01
n = 3
lyap = [0.0]*n
x0 = np.zeros(12)
initial_condition = [10.0, 10.0, 5.0]
x0[:3] = copy(initial_condition)
for i in range(3):
x0[n+n*i+i]=1.0
# integrate trantient time
t = np.arange(0, 10, 0.1)
sol = odeint(lorenz, initial_condition, t)
x0[:3] = copy(sol[-1,:]) # new initial condition
ti = t[-1]
tf = ti + stept
for i in range(10):
t_interval = np.arange(ti, tf, dt)
sol = odeint(lorenz_with_lyap, x0, t_interval)
x0 = copy(sol[-1,:])
gram_schmidt(x0, lyap, stept)
for xx in lyap:
print "%15.9f" % xx,
print ""
ti = tf
tf = ti+stept
I think the problem is in gram_schmidt
function. Is the question clear?
Thank you for any guide.
python c++
add a comment |
Here is my try to calculate lyapunov spectrum of lorenz oscillator. I followed step by step from boost library program, but I can not reproduce the results.
import numpy as np
import pylab as pl
from copy import copy
from numpy import dot, log
from numpy.linalg import norm
from scipy.integrate import odeint
from sys import exit
# system with out perturbation----------------------------#
def lorenz(x0, t):
x, y, z = x0
dxdt = s * (y - x)
dydt = x * (r - z) - y
dzdt = x * y - b * z
return [dxdt, dydt, dzdt]
#system with perturbation---------------------------------#
def lorenz_with_lyap(x0, t):
x,y,z = x0[:3]
dxdt = [0.0]*12
dxdt[0] = s * (y - x)
dxdt[1] = x * (r - z) - y
dxdt[2] = x * y - b * z
# this is jacobian*Y
for l in range(3):
m = 3*l+3
dxdt[m] = -s * x0[m] + s * x0[m+1]
dxdt[m+1] = (r - z) * x0[m] -1.0 * x0[m+1] -1.0 * x * x0[m+2]
dxdt[m+2] = y * x0[m] + x * x0[m+1] -b * x0[m+2]
return dxdt
#---------------------------------------------------------#
def gram_schmidt(x0, lyap, t):
# vectors
a = x0[3: 6]
b = x0[6: 9]
c = x0[9:12]
v1 = copy(a)
v2 = b - dot(v1, b)/dot(v1, v1) * v1
v3 = c - dot(v1, c)/dot(v1, v1) * v1 -dot(v2, c)/dot(v2, v2) * v2
znorm = [0] * 3
znorm[0] = norm(v1)
znorm[1] = norm(v2)
znorm[2] = norm(v3)
# normalize vectors
x0[3:6 ] = v1/znorm[0]
x0[6:9 ] = v2/znorm[1]
x0[9:12] = v3/znorm[2]
for i in range(3):
lyap[i] += log(znorm[i])/t
# parameters
s = 10.0
r = 28.0
b = 8.0/3.0
stept = 1.0
dt = 0.01
n = 3
lyap = [0.0]*n
x0 = np.zeros(12)
initial_condition = [10.0, 10.0, 5.0]
x0[:3] = copy(initial_condition)
for i in range(3):
x0[n+n*i+i]=1.0
# integrate trantient time
t = np.arange(0, 10, 0.1)
sol = odeint(lorenz, initial_condition, t)
x0[:3] = copy(sol[-1,:]) # new initial condition
ti = t[-1]
tf = ti + stept
for i in range(10):
t_interval = np.arange(ti, tf, dt)
sol = odeint(lorenz_with_lyap, x0, t_interval)
x0 = copy(sol[-1,:])
gram_schmidt(x0, lyap, stept)
for xx in lyap:
print "%15.9f" % xx,
print ""
ti = tf
tf = ti+stept
I think the problem is in gram_schmidt
function. Is the question clear?
Thank you for any guide.
python c++
Here is my try to calculate lyapunov spectrum of lorenz oscillator. I followed step by step from boost library program, but I can not reproduce the results.
import numpy as np
import pylab as pl
from copy import copy
from numpy import dot, log
from numpy.linalg import norm
from scipy.integrate import odeint
from sys import exit
# system with out perturbation----------------------------#
def lorenz(x0, t):
x, y, z = x0
dxdt = s * (y - x)
dydt = x * (r - z) - y
dzdt = x * y - b * z
return [dxdt, dydt, dzdt]
#system with perturbation---------------------------------#
def lorenz_with_lyap(x0, t):
x,y,z = x0[:3]
dxdt = [0.0]*12
dxdt[0] = s * (y - x)
dxdt[1] = x * (r - z) - y
dxdt[2] = x * y - b * z
# this is jacobian*Y
for l in range(3):
m = 3*l+3
dxdt[m] = -s * x0[m] + s * x0[m+1]
dxdt[m+1] = (r - z) * x0[m] -1.0 * x0[m+1] -1.0 * x * x0[m+2]
dxdt[m+2] = y * x0[m] + x * x0[m+1] -b * x0[m+2]
return dxdt
#---------------------------------------------------------#
def gram_schmidt(x0, lyap, t):
# vectors
a = x0[3: 6]
b = x0[6: 9]
c = x0[9:12]
v1 = copy(a)
v2 = b - dot(v1, b)/dot(v1, v1) * v1
v3 = c - dot(v1, c)/dot(v1, v1) * v1 -dot(v2, c)/dot(v2, v2) * v2
znorm = [0] * 3
znorm[0] = norm(v1)
znorm[1] = norm(v2)
znorm[2] = norm(v3)
# normalize vectors
x0[3:6 ] = v1/znorm[0]
x0[6:9 ] = v2/znorm[1]
x0[9:12] = v3/znorm[2]
for i in range(3):
lyap[i] += log(znorm[i])/t
# parameters
s = 10.0
r = 28.0
b = 8.0/3.0
stept = 1.0
dt = 0.01
n = 3
lyap = [0.0]*n
x0 = np.zeros(12)
initial_condition = [10.0, 10.0, 5.0]
x0[:3] = copy(initial_condition)
for i in range(3):
x0[n+n*i+i]=1.0
# integrate trantient time
t = np.arange(0, 10, 0.1)
sol = odeint(lorenz, initial_condition, t)
x0[:3] = copy(sol[-1,:]) # new initial condition
ti = t[-1]
tf = ti + stept
for i in range(10):
t_interval = np.arange(ti, tf, dt)
sol = odeint(lorenz_with_lyap, x0, t_interval)
x0 = copy(sol[-1,:])
gram_schmidt(x0, lyap, stept)
for xx in lyap:
print "%15.9f" % xx,
print ""
ti = tf
tf = ti+stept
I think the problem is in gram_schmidt
function. Is the question clear?
Thank you for any guide.
python c++
python c++
asked 5 mins ago
Abolfazl
285
285
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "196"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210158%2flyapunov-spectrum-of-lorenz-oscillator%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f210158%2flyapunov-spectrum-of-lorenz-oscillator%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown