Pandas, group by resample and fill missing values with zero












1














I have the following code



import pandas as pd

data = {'date': ['2014-05-01', '2014-05-02', '2014-05-04', '2014-05-01', '2014-05-03', '2014-05-04'],
'battle_deaths': [34, 25, 26, 15, 15, 14],
'group': [1, 1, 1, 2, 2, 2]}

df = pd.DataFrame(data, columns=['date', 'battle_deaths', 'group'])

df['date'] = pd.to_datetime(df['date'])
df = df.set_index('date')
df = df.sort_index()


I want to have a battle deaths count per group without any gaps in the dates. Something like



            battle_deaths  group
date
2014-05-01 34 1
2014-05-01 15 2
2014-05-02 25 1
2014-05-02 0 2 <--added with battle_deaths = 0 to fill the date range
2014-05-03 0 1 <--added
2014-05-03 15 2
2014-05-04 26 1
2014-05-04 14 2


I have tried the following but it doesn't work(because the fillna method does not take a number, but adding it here to show what I want to achieve)



df.groupby(df.group.name).resample('D').fillna(0)


How can I do this with pandas?










share|improve this question



























    1














    I have the following code



    import pandas as pd

    data = {'date': ['2014-05-01', '2014-05-02', '2014-05-04', '2014-05-01', '2014-05-03', '2014-05-04'],
    'battle_deaths': [34, 25, 26, 15, 15, 14],
    'group': [1, 1, 1, 2, 2, 2]}

    df = pd.DataFrame(data, columns=['date', 'battle_deaths', 'group'])

    df['date'] = pd.to_datetime(df['date'])
    df = df.set_index('date')
    df = df.sort_index()


    I want to have a battle deaths count per group without any gaps in the dates. Something like



                battle_deaths  group
    date
    2014-05-01 34 1
    2014-05-01 15 2
    2014-05-02 25 1
    2014-05-02 0 2 <--added with battle_deaths = 0 to fill the date range
    2014-05-03 0 1 <--added
    2014-05-03 15 2
    2014-05-04 26 1
    2014-05-04 14 2


    I have tried the following but it doesn't work(because the fillna method does not take a number, but adding it here to show what I want to achieve)



    df.groupby(df.group.name).resample('D').fillna(0)


    How can I do this with pandas?










    share|improve this question

























      1












      1








      1







      I have the following code



      import pandas as pd

      data = {'date': ['2014-05-01', '2014-05-02', '2014-05-04', '2014-05-01', '2014-05-03', '2014-05-04'],
      'battle_deaths': [34, 25, 26, 15, 15, 14],
      'group': [1, 1, 1, 2, 2, 2]}

      df = pd.DataFrame(data, columns=['date', 'battle_deaths', 'group'])

      df['date'] = pd.to_datetime(df['date'])
      df = df.set_index('date')
      df = df.sort_index()


      I want to have a battle deaths count per group without any gaps in the dates. Something like



                  battle_deaths  group
      date
      2014-05-01 34 1
      2014-05-01 15 2
      2014-05-02 25 1
      2014-05-02 0 2 <--added with battle_deaths = 0 to fill the date range
      2014-05-03 0 1 <--added
      2014-05-03 15 2
      2014-05-04 26 1
      2014-05-04 14 2


      I have tried the following but it doesn't work(because the fillna method does not take a number, but adding it here to show what I want to achieve)



      df.groupby(df.group.name).resample('D').fillna(0)


      How can I do this with pandas?










      share|improve this question













      I have the following code



      import pandas as pd

      data = {'date': ['2014-05-01', '2014-05-02', '2014-05-04', '2014-05-01', '2014-05-03', '2014-05-04'],
      'battle_deaths': [34, 25, 26, 15, 15, 14],
      'group': [1, 1, 1, 2, 2, 2]}

      df = pd.DataFrame(data, columns=['date', 'battle_deaths', 'group'])

      df['date'] = pd.to_datetime(df['date'])
      df = df.set_index('date')
      df = df.sort_index()


      I want to have a battle deaths count per group without any gaps in the dates. Something like



                  battle_deaths  group
      date
      2014-05-01 34 1
      2014-05-01 15 2
      2014-05-02 25 1
      2014-05-02 0 2 <--added with battle_deaths = 0 to fill the date range
      2014-05-03 0 1 <--added
      2014-05-03 15 2
      2014-05-04 26 1
      2014-05-04 14 2


      I have tried the following but it doesn't work(because the fillna method does not take a number, but adding it here to show what I want to achieve)



      df.groupby(df.group.name).resample('D').fillna(0)


      How can I do this with pandas?







      pandas






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 21 '18 at 15:09









      Can't Tell

      6,02874169




      6,02874169
























          1 Answer
          1






          active

          oldest

          votes


















          3














          Use Resampler.asfreq with parameter fill_value=0:



          df = df.groupby('group').resample('D')['battle_deaths'].asfreq(fill_value=0).reset_index()
          print (df)
          group date battle_deaths
          0 1 2014-05-01 34
          1 1 2014-05-02 25
          2 1 2014-05-03 0
          3 1 2014-05-04 26
          4 2 2014-05-01 15
          5 2 2014-05-02 0
          6 2 2014-05-03 15
          7 2 2014-05-04 14





          share|improve this answer



















          • 1




            happy thanksgiving :-)
            – W-B
            Nov 21 '18 at 15:13











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53415009%2fpandas-group-by-resample-and-fill-missing-values-with-zero%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3














          Use Resampler.asfreq with parameter fill_value=0:



          df = df.groupby('group').resample('D')['battle_deaths'].asfreq(fill_value=0).reset_index()
          print (df)
          group date battle_deaths
          0 1 2014-05-01 34
          1 1 2014-05-02 25
          2 1 2014-05-03 0
          3 1 2014-05-04 26
          4 2 2014-05-01 15
          5 2 2014-05-02 0
          6 2 2014-05-03 15
          7 2 2014-05-04 14





          share|improve this answer



















          • 1




            happy thanksgiving :-)
            – W-B
            Nov 21 '18 at 15:13
















          3














          Use Resampler.asfreq with parameter fill_value=0:



          df = df.groupby('group').resample('D')['battle_deaths'].asfreq(fill_value=0).reset_index()
          print (df)
          group date battle_deaths
          0 1 2014-05-01 34
          1 1 2014-05-02 25
          2 1 2014-05-03 0
          3 1 2014-05-04 26
          4 2 2014-05-01 15
          5 2 2014-05-02 0
          6 2 2014-05-03 15
          7 2 2014-05-04 14





          share|improve this answer



















          • 1




            happy thanksgiving :-)
            – W-B
            Nov 21 '18 at 15:13














          3












          3








          3






          Use Resampler.asfreq with parameter fill_value=0:



          df = df.groupby('group').resample('D')['battle_deaths'].asfreq(fill_value=0).reset_index()
          print (df)
          group date battle_deaths
          0 1 2014-05-01 34
          1 1 2014-05-02 25
          2 1 2014-05-03 0
          3 1 2014-05-04 26
          4 2 2014-05-01 15
          5 2 2014-05-02 0
          6 2 2014-05-03 15
          7 2 2014-05-04 14





          share|improve this answer














          Use Resampler.asfreq with parameter fill_value=0:



          df = df.groupby('group').resample('D')['battle_deaths'].asfreq(fill_value=0).reset_index()
          print (df)
          group date battle_deaths
          0 1 2014-05-01 34
          1 1 2014-05-02 25
          2 1 2014-05-03 0
          3 1 2014-05-04 26
          4 2 2014-05-01 15
          5 2 2014-05-02 0
          6 2 2014-05-03 15
          7 2 2014-05-04 14






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Nov 21 '18 at 15:13

























          answered Nov 21 '18 at 15:11









          jezrael

          321k22262340




          321k22262340








          • 1




            happy thanksgiving :-)
            – W-B
            Nov 21 '18 at 15:13














          • 1




            happy thanksgiving :-)
            – W-B
            Nov 21 '18 at 15:13








          1




          1




          happy thanksgiving :-)
          – W-B
          Nov 21 '18 at 15:13




          happy thanksgiving :-)
          – W-B
          Nov 21 '18 at 15:13


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53415009%2fpandas-group-by-resample-and-fill-missing-values-with-zero%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          404 Error Contact Form 7 ajax form submitting

          How to know if a Active Directory user can login interactively

          Refactoring coordinates for Minecraft Pi buildings written in Python