Do non-continuous Sobolev maps pull back closed forms to weakly closed forms?












2















$newcommand{R}{mathbb R}$
$newcommand{N}{mathbb N}$
$newcommand{de}{delta}$
$newcommand{sig}{sigma}$
$newcommand{Average}[1]{leftlangle#1rightrangle} $
$newcommand{IP}[2]{Average{#1,#2}}$



Let $n,d in mathbb{N}$, and let $Omega subseteq R^n$ be open.
Let $f in W^{1,k}(Omega,R^d)$. Let $omega in Omega^k(R^d)$ be a smooth closed $k$-form; Is it true that $f^*omega$ is weakly closed? i.e. does
$$int_{Omega} IP{f^* omega}{de sig}=0$$
hold for every compactly-supported $k+1$-form $sigma in Omega^{k+1}(Omega)$?



I have read that this should be true, but I am only able to show this in two special cases:




  1. The form $omega$ is constant.


  2. $f$ is continuous.



Does this hold for non-continuous Sobolev maps in general?




Here is the problem as I see it: We approximate $f$ via smooth functions; suppose that $f_n in C^{infty}(Omega,R^d)$ satisfy $f_n to f$ in $W^{1,k}(Omega,R^d)$. Then
$$
int_{Omega} IP{f^* omega}{de sig}=lim_{n to infty} int_{Omega} IP{ f_n^* omega}{de sig}=lim_{n to infty} int_{Omega} IP{d f_n^* omega}{ sig}=0.
$$

Now, we need to justify the passage to the limit $int_{Omega} IP{f^* omega}{de sig}=lim_{n to infty} int_{Omega} IP{ f_n^* omega}{de sig}$.



If $omega$ is constant, that is $omega_q= alpha$ independently of $q in R^d$, where $alpha$ is a fixed element in $bigwedge^k (R^d)^* $, then we have
$$
|f^* omega-f_n^* omega| le |alpha| , left|bigwedge^{k} df-bigwedge^{k} df_nright|_{op},
$$

thus
$$
left|int_{Omega} IP{f^* omega}{de sig}- IP{ f_n^* omega}{de sig}right| le |alpha| |de sig|_{sup} int_{Omega} left|bigwedge^{k} df-bigwedge^{k} df_nright|.
$$

and The RHS tends to zero since Sobolev approximation lifts to exterior powers.



When $omega$ is not constant, we have a problem that the point of evaluation "moves with the function" that pulls back, that is
$$
begin{split}
& |f^* omega-f_n^* omega|(p)= \
&left|omega_{f(p)} circ bigwedge^{k} df_p -omega_{f_n(p)} circ bigwedge^{k} (df_n)_p right| le \
&left|big(omega_{f(p)}-omega_{f_n(p)}) circ bigwedge^{k} df_p +omega_{f_n(p)} circ big( bigwedge^{k} df_p-bigwedge^{k} (df_n)_p) right| le \
&|omega_{f(p)}-omega_{f_n(p)}| , , cdot , , left| bigwedge^{k} df_pright| +|omega_{f_n(p)} | , , cdot , , left| bigwedge^{k} df_p-bigwedge^{k} (df_n)_p right|
end{split}
$$



So, we we need to estimate $omega_{f(p)}-omega_{f_n(p)}$. When $f$ is continuous, we can take $f_n$ which converges uniformly to $f$, and thus we can continue the estimate:



$$
begin{split}
&|omega_{f(p)}-omega_{f_n(p)}| , , cdot , , left| bigwedge^{k} df_pright| +|omega_{f_n(p)} | , , cdot , , left| bigwedge^{k} df_p-bigwedge^{k} (df_n)_p right| le \
&|Tomega|_{sup} , cdot , |f(p)-f_n(p)| , cdot , left| bigwedge^{k} df_pright| +|omega |_{sup} , , cdot , , left| bigwedge^{k} df_p-bigwedge^{k} (df_n)_p right| le \
&|Tomega|_{sup} , cdot , |f-f_n|_{sup} , cdot , left| bigwedge^{k} df_pright| +|omega |_{sup} , , cdot , , left| bigwedge^{k} df_p-bigwedge^{k} (df_n)_p right| stackrel{L^1}{to} 0,
%&|alpha circ brk{bigwedge^{k} df_p-bigwedge^{k} (df_n)_p} | le |alpha| cdot |bigwedge^{k} df_p-bigwedge^{k} (df_n)_p|_{op}.
end{split}
$$



So, does the preservation of closedness hold in general (for non-continuous maps) or is there a counter-example?










share|cite|improve this question



























    2















    $newcommand{R}{mathbb R}$
    $newcommand{N}{mathbb N}$
    $newcommand{de}{delta}$
    $newcommand{sig}{sigma}$
    $newcommand{Average}[1]{leftlangle#1rightrangle} $
    $newcommand{IP}[2]{Average{#1,#2}}$



    Let $n,d in mathbb{N}$, and let $Omega subseteq R^n$ be open.
    Let $f in W^{1,k}(Omega,R^d)$. Let $omega in Omega^k(R^d)$ be a smooth closed $k$-form; Is it true that $f^*omega$ is weakly closed? i.e. does
    $$int_{Omega} IP{f^* omega}{de sig}=0$$
    hold for every compactly-supported $k+1$-form $sigma in Omega^{k+1}(Omega)$?



    I have read that this should be true, but I am only able to show this in two special cases:




    1. The form $omega$ is constant.


    2. $f$ is continuous.



    Does this hold for non-continuous Sobolev maps in general?




    Here is the problem as I see it: We approximate $f$ via smooth functions; suppose that $f_n in C^{infty}(Omega,R^d)$ satisfy $f_n to f$ in $W^{1,k}(Omega,R^d)$. Then
    $$
    int_{Omega} IP{f^* omega}{de sig}=lim_{n to infty} int_{Omega} IP{ f_n^* omega}{de sig}=lim_{n to infty} int_{Omega} IP{d f_n^* omega}{ sig}=0.
    $$

    Now, we need to justify the passage to the limit $int_{Omega} IP{f^* omega}{de sig}=lim_{n to infty} int_{Omega} IP{ f_n^* omega}{de sig}$.



    If $omega$ is constant, that is $omega_q= alpha$ independently of $q in R^d$, where $alpha$ is a fixed element in $bigwedge^k (R^d)^* $, then we have
    $$
    |f^* omega-f_n^* omega| le |alpha| , left|bigwedge^{k} df-bigwedge^{k} df_nright|_{op},
    $$

    thus
    $$
    left|int_{Omega} IP{f^* omega}{de sig}- IP{ f_n^* omega}{de sig}right| le |alpha| |de sig|_{sup} int_{Omega} left|bigwedge^{k} df-bigwedge^{k} df_nright|.
    $$

    and The RHS tends to zero since Sobolev approximation lifts to exterior powers.



    When $omega$ is not constant, we have a problem that the point of evaluation "moves with the function" that pulls back, that is
    $$
    begin{split}
    & |f^* omega-f_n^* omega|(p)= \
    &left|omega_{f(p)} circ bigwedge^{k} df_p -omega_{f_n(p)} circ bigwedge^{k} (df_n)_p right| le \
    &left|big(omega_{f(p)}-omega_{f_n(p)}) circ bigwedge^{k} df_p +omega_{f_n(p)} circ big( bigwedge^{k} df_p-bigwedge^{k} (df_n)_p) right| le \
    &|omega_{f(p)}-omega_{f_n(p)}| , , cdot , , left| bigwedge^{k} df_pright| +|omega_{f_n(p)} | , , cdot , , left| bigwedge^{k} df_p-bigwedge^{k} (df_n)_p right|
    end{split}
    $$



    So, we we need to estimate $omega_{f(p)}-omega_{f_n(p)}$. When $f$ is continuous, we can take $f_n$ which converges uniformly to $f$, and thus we can continue the estimate:



    $$
    begin{split}
    &|omega_{f(p)}-omega_{f_n(p)}| , , cdot , , left| bigwedge^{k} df_pright| +|omega_{f_n(p)} | , , cdot , , left| bigwedge^{k} df_p-bigwedge^{k} (df_n)_p right| le \
    &|Tomega|_{sup} , cdot , |f(p)-f_n(p)| , cdot , left| bigwedge^{k} df_pright| +|omega |_{sup} , , cdot , , left| bigwedge^{k} df_p-bigwedge^{k} (df_n)_p right| le \
    &|Tomega|_{sup} , cdot , |f-f_n|_{sup} , cdot , left| bigwedge^{k} df_pright| +|omega |_{sup} , , cdot , , left| bigwedge^{k} df_p-bigwedge^{k} (df_n)_p right| stackrel{L^1}{to} 0,
    %&|alpha circ brk{bigwedge^{k} df_p-bigwedge^{k} (df_n)_p} | le |alpha| cdot |bigwedge^{k} df_p-bigwedge^{k} (df_n)_p|_{op}.
    end{split}
    $$



    So, does the preservation of closedness hold in general (for non-continuous maps) or is there a counter-example?










    share|cite|improve this question

























      2












      2








      2


      1






      $newcommand{R}{mathbb R}$
      $newcommand{N}{mathbb N}$
      $newcommand{de}{delta}$
      $newcommand{sig}{sigma}$
      $newcommand{Average}[1]{leftlangle#1rightrangle} $
      $newcommand{IP}[2]{Average{#1,#2}}$



      Let $n,d in mathbb{N}$, and let $Omega subseteq R^n$ be open.
      Let $f in W^{1,k}(Omega,R^d)$. Let $omega in Omega^k(R^d)$ be a smooth closed $k$-form; Is it true that $f^*omega$ is weakly closed? i.e. does
      $$int_{Omega} IP{f^* omega}{de sig}=0$$
      hold for every compactly-supported $k+1$-form $sigma in Omega^{k+1}(Omega)$?



      I have read that this should be true, but I am only able to show this in two special cases:




      1. The form $omega$ is constant.


      2. $f$ is continuous.



      Does this hold for non-continuous Sobolev maps in general?




      Here is the problem as I see it: We approximate $f$ via smooth functions; suppose that $f_n in C^{infty}(Omega,R^d)$ satisfy $f_n to f$ in $W^{1,k}(Omega,R^d)$. Then
      $$
      int_{Omega} IP{f^* omega}{de sig}=lim_{n to infty} int_{Omega} IP{ f_n^* omega}{de sig}=lim_{n to infty} int_{Omega} IP{d f_n^* omega}{ sig}=0.
      $$

      Now, we need to justify the passage to the limit $int_{Omega} IP{f^* omega}{de sig}=lim_{n to infty} int_{Omega} IP{ f_n^* omega}{de sig}$.



      If $omega$ is constant, that is $omega_q= alpha$ independently of $q in R^d$, where $alpha$ is a fixed element in $bigwedge^k (R^d)^* $, then we have
      $$
      |f^* omega-f_n^* omega| le |alpha| , left|bigwedge^{k} df-bigwedge^{k} df_nright|_{op},
      $$

      thus
      $$
      left|int_{Omega} IP{f^* omega}{de sig}- IP{ f_n^* omega}{de sig}right| le |alpha| |de sig|_{sup} int_{Omega} left|bigwedge^{k} df-bigwedge^{k} df_nright|.
      $$

      and The RHS tends to zero since Sobolev approximation lifts to exterior powers.



      When $omega$ is not constant, we have a problem that the point of evaluation "moves with the function" that pulls back, that is
      $$
      begin{split}
      & |f^* omega-f_n^* omega|(p)= \
      &left|omega_{f(p)} circ bigwedge^{k} df_p -omega_{f_n(p)} circ bigwedge^{k} (df_n)_p right| le \
      &left|big(omega_{f(p)}-omega_{f_n(p)}) circ bigwedge^{k} df_p +omega_{f_n(p)} circ big( bigwedge^{k} df_p-bigwedge^{k} (df_n)_p) right| le \
      &|omega_{f(p)}-omega_{f_n(p)}| , , cdot , , left| bigwedge^{k} df_pright| +|omega_{f_n(p)} | , , cdot , , left| bigwedge^{k} df_p-bigwedge^{k} (df_n)_p right|
      end{split}
      $$



      So, we we need to estimate $omega_{f(p)}-omega_{f_n(p)}$. When $f$ is continuous, we can take $f_n$ which converges uniformly to $f$, and thus we can continue the estimate:



      $$
      begin{split}
      &|omega_{f(p)}-omega_{f_n(p)}| , , cdot , , left| bigwedge^{k} df_pright| +|omega_{f_n(p)} | , , cdot , , left| bigwedge^{k} df_p-bigwedge^{k} (df_n)_p right| le \
      &|Tomega|_{sup} , cdot , |f(p)-f_n(p)| , cdot , left| bigwedge^{k} df_pright| +|omega |_{sup} , , cdot , , left| bigwedge^{k} df_p-bigwedge^{k} (df_n)_p right| le \
      &|Tomega|_{sup} , cdot , |f-f_n|_{sup} , cdot , left| bigwedge^{k} df_pright| +|omega |_{sup} , , cdot , , left| bigwedge^{k} df_p-bigwedge^{k} (df_n)_p right| stackrel{L^1}{to} 0,
      %&|alpha circ brk{bigwedge^{k} df_p-bigwedge^{k} (df_n)_p} | le |alpha| cdot |bigwedge^{k} df_p-bigwedge^{k} (df_n)_p|_{op}.
      end{split}
      $$



      So, does the preservation of closedness hold in general (for non-continuous maps) or is there a counter-example?










      share|cite|improve this question














      $newcommand{R}{mathbb R}$
      $newcommand{N}{mathbb N}$
      $newcommand{de}{delta}$
      $newcommand{sig}{sigma}$
      $newcommand{Average}[1]{leftlangle#1rightrangle} $
      $newcommand{IP}[2]{Average{#1,#2}}$



      Let $n,d in mathbb{N}$, and let $Omega subseteq R^n$ be open.
      Let $f in W^{1,k}(Omega,R^d)$. Let $omega in Omega^k(R^d)$ be a smooth closed $k$-form; Is it true that $f^*omega$ is weakly closed? i.e. does
      $$int_{Omega} IP{f^* omega}{de sig}=0$$
      hold for every compactly-supported $k+1$-form $sigma in Omega^{k+1}(Omega)$?



      I have read that this should be true, but I am only able to show this in two special cases:




      1. The form $omega$ is constant.


      2. $f$ is continuous.



      Does this hold for non-continuous Sobolev maps in general?




      Here is the problem as I see it: We approximate $f$ via smooth functions; suppose that $f_n in C^{infty}(Omega,R^d)$ satisfy $f_n to f$ in $W^{1,k}(Omega,R^d)$. Then
      $$
      int_{Omega} IP{f^* omega}{de sig}=lim_{n to infty} int_{Omega} IP{ f_n^* omega}{de sig}=lim_{n to infty} int_{Omega} IP{d f_n^* omega}{ sig}=0.
      $$

      Now, we need to justify the passage to the limit $int_{Omega} IP{f^* omega}{de sig}=lim_{n to infty} int_{Omega} IP{ f_n^* omega}{de sig}$.



      If $omega$ is constant, that is $omega_q= alpha$ independently of $q in R^d$, where $alpha$ is a fixed element in $bigwedge^k (R^d)^* $, then we have
      $$
      |f^* omega-f_n^* omega| le |alpha| , left|bigwedge^{k} df-bigwedge^{k} df_nright|_{op},
      $$

      thus
      $$
      left|int_{Omega} IP{f^* omega}{de sig}- IP{ f_n^* omega}{de sig}right| le |alpha| |de sig|_{sup} int_{Omega} left|bigwedge^{k} df-bigwedge^{k} df_nright|.
      $$

      and The RHS tends to zero since Sobolev approximation lifts to exterior powers.



      When $omega$ is not constant, we have a problem that the point of evaluation "moves with the function" that pulls back, that is
      $$
      begin{split}
      & |f^* omega-f_n^* omega|(p)= \
      &left|omega_{f(p)} circ bigwedge^{k} df_p -omega_{f_n(p)} circ bigwedge^{k} (df_n)_p right| le \
      &left|big(omega_{f(p)}-omega_{f_n(p)}) circ bigwedge^{k} df_p +omega_{f_n(p)} circ big( bigwedge^{k} df_p-bigwedge^{k} (df_n)_p) right| le \
      &|omega_{f(p)}-omega_{f_n(p)}| , , cdot , , left| bigwedge^{k} df_pright| +|omega_{f_n(p)} | , , cdot , , left| bigwedge^{k} df_p-bigwedge^{k} (df_n)_p right|
      end{split}
      $$



      So, we we need to estimate $omega_{f(p)}-omega_{f_n(p)}$. When $f$ is continuous, we can take $f_n$ which converges uniformly to $f$, and thus we can continue the estimate:



      $$
      begin{split}
      &|omega_{f(p)}-omega_{f_n(p)}| , , cdot , , left| bigwedge^{k} df_pright| +|omega_{f_n(p)} | , , cdot , , left| bigwedge^{k} df_p-bigwedge^{k} (df_n)_p right| le \
      &|Tomega|_{sup} , cdot , |f(p)-f_n(p)| , cdot , left| bigwedge^{k} df_pright| +|omega |_{sup} , , cdot , , left| bigwedge^{k} df_p-bigwedge^{k} (df_n)_p right| le \
      &|Tomega|_{sup} , cdot , |f-f_n|_{sup} , cdot , left| bigwedge^{k} df_pright| +|omega |_{sup} , , cdot , , left| bigwedge^{k} df_p-bigwedge^{k} (df_n)_p right| stackrel{L^1}{to} 0,
      %&|alpha circ brk{bigwedge^{k} df_p-bigwedge^{k} (df_n)_p} | le |alpha| cdot |bigwedge^{k} df_p-bigwedge^{k} (df_n)_p|_{op}.
      end{split}
      $$



      So, does the preservation of closedness hold in general (for non-continuous maps) or is there a counter-example?







      dg.differential-geometry ap.analysis-of-pdes sobolev-spaces regularity exterior-algebra






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 hours ago









      Asaf ShacharAsaf Shachar

      2,2391746




      2,2391746






















          1 Answer
          1






          active

          oldest

          votes


















          2














          This is I guess Lemma 4.1 in https://arxiv.org/pdf/1301.4978.pdf. The assumptions might be a bit different than yours, but it might be useful. I guess the assumptions in Lemma 4.1 are close to be optimal. I will expand my answer when I have time. Let me know if Lemma 4.1 suits you.






          share|cite|improve this answer

























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "504"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f320789%2fdo-non-continuous-sobolev-maps-pull-back-closed-forms-to-weakly-closed-forms%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            This is I guess Lemma 4.1 in https://arxiv.org/pdf/1301.4978.pdf. The assumptions might be a bit different than yours, but it might be useful. I guess the assumptions in Lemma 4.1 are close to be optimal. I will expand my answer when I have time. Let me know if Lemma 4.1 suits you.






            share|cite|improve this answer






























              2














              This is I guess Lemma 4.1 in https://arxiv.org/pdf/1301.4978.pdf. The assumptions might be a bit different than yours, but it might be useful. I guess the assumptions in Lemma 4.1 are close to be optimal. I will expand my answer when I have time. Let me know if Lemma 4.1 suits you.






              share|cite|improve this answer




























                2












                2








                2







                This is I guess Lemma 4.1 in https://arxiv.org/pdf/1301.4978.pdf. The assumptions might be a bit different than yours, but it might be useful. I guess the assumptions in Lemma 4.1 are close to be optimal. I will expand my answer when I have time. Let me know if Lemma 4.1 suits you.






                share|cite|improve this answer















                This is I guess Lemma 4.1 in https://arxiv.org/pdf/1301.4978.pdf. The assumptions might be a bit different than yours, but it might be useful. I guess the assumptions in Lemma 4.1 are close to be optimal. I will expand my answer when I have time. Let me know if Lemma 4.1 suits you.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 42 mins ago









                Martin Sleziak

                2,95532028




                2,95532028










                answered 47 mins ago









                Piotr HajlaszPiotr Hajlasz

                6,50442356




                6,50442356






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to MathOverflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f320789%2fdo-non-continuous-sobolev-maps-pull-back-closed-forms-to-weakly-closed-forms%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    404 Error Contact Form 7 ajax form submitting

                    How to know if a Active Directory user can login interactively

                    Refactoring coordinates for Minecraft Pi buildings written in Python