using printf before and inside a loop x86-64 assembly
I'm having trouble figuring out how to use printf correctly in this function. So the function is called multInts and is supposed to multiply the first element of the first array with the first element of the second array and continue through the whole array. However, the lab instructions specify that I can't call printf in the main function. So, I need to print out the word "Products:n" and then in each new line after that, print out the product. I don't know how to use printf within the loop, however. The instructor said that we should "call printf in the loop after calculating product" and also to "save and restore caller-save registers before calling printf," but I'm not sure what that means.
Here's what my code looks like so far:
.file "lab4.s"
.section .rodata
.LC0:
.string "Products: n"
.LC1:
.string "%i n"
.data
sizeIntArrays:
.long 5
sizeShortArrays:
.word 4
intArray1:
.long 10
.long 25
.long 33
.long 48
.long 52
intArray2:
.long 20
.long -37
.long 42
.long -61
.long -10
##### MAIN FUNCTION
.text
.globl main
.type main,@function
main:
pushq %rbp
movq %rsp, %rbp
#pass parameters and call other functions
movl sizeIntArrays, %edi #move size to registers for 1st parameter
leaq intArray1, %rsi #load effective address of intArray1 to register rsi
leaq intArray2, %rdx #load effective address of intArray2 to register rdx
call multInts #call multInts function
movq $0, %rax #return 0 to caller
movq %rbp, %rsp
popq %rbp
ret
.size main,.-main
##### MULTINTS
.globl multInts
.type multInts,@function
multInts:
pushq %rbp
movq %rsp, %rbp
#add code here for what the functions should do
movq $0, %r8 #initialize index for array access in caller save reg
movq $0, %rcx #initialize 8 byte caller save result reg
loop0:
cmpl %r8d, %edi #compare index to size
je exit0 #exit if equal
movslq (%rsi,%r8,4),%rax # Load a long into RAX
movslq (%rdx,%r8,4),%r11 # Load a long into R11
imulq %r11, %rax # RAX *= R11
addq %rax, %rcx # RCX += RAX
incq %r8 #increment index
jmp loop0
exit0:
movq $.LC0, %rdi
movq %rcx, %rsi
movq $0, %rax
call printf
movq %rbp, %rsp
popq %rbp
ret
.size multInts,.-multInts
What I've tried to do is just move the printf instruction to before the loop, but it gives me a segmentation fault when trying to run the loop because %rdi and %rsi contain the addresses of the arrays that need to be used in the loop. How do I get around that and which registers should I use? Also, how do I call printf within the loop?
The output should look something like this:
Products:
200
-925
1386
-2928
-520
arrays assembly printf x86-64
add a comment |
I'm having trouble figuring out how to use printf correctly in this function. So the function is called multInts and is supposed to multiply the first element of the first array with the first element of the second array and continue through the whole array. However, the lab instructions specify that I can't call printf in the main function. So, I need to print out the word "Products:n" and then in each new line after that, print out the product. I don't know how to use printf within the loop, however. The instructor said that we should "call printf in the loop after calculating product" and also to "save and restore caller-save registers before calling printf," but I'm not sure what that means.
Here's what my code looks like so far:
.file "lab4.s"
.section .rodata
.LC0:
.string "Products: n"
.LC1:
.string "%i n"
.data
sizeIntArrays:
.long 5
sizeShortArrays:
.word 4
intArray1:
.long 10
.long 25
.long 33
.long 48
.long 52
intArray2:
.long 20
.long -37
.long 42
.long -61
.long -10
##### MAIN FUNCTION
.text
.globl main
.type main,@function
main:
pushq %rbp
movq %rsp, %rbp
#pass parameters and call other functions
movl sizeIntArrays, %edi #move size to registers for 1st parameter
leaq intArray1, %rsi #load effective address of intArray1 to register rsi
leaq intArray2, %rdx #load effective address of intArray2 to register rdx
call multInts #call multInts function
movq $0, %rax #return 0 to caller
movq %rbp, %rsp
popq %rbp
ret
.size main,.-main
##### MULTINTS
.globl multInts
.type multInts,@function
multInts:
pushq %rbp
movq %rsp, %rbp
#add code here for what the functions should do
movq $0, %r8 #initialize index for array access in caller save reg
movq $0, %rcx #initialize 8 byte caller save result reg
loop0:
cmpl %r8d, %edi #compare index to size
je exit0 #exit if equal
movslq (%rsi,%r8,4),%rax # Load a long into RAX
movslq (%rdx,%r8,4),%r11 # Load a long into R11
imulq %r11, %rax # RAX *= R11
addq %rax, %rcx # RCX += RAX
incq %r8 #increment index
jmp loop0
exit0:
movq $.LC0, %rdi
movq %rcx, %rsi
movq $0, %rax
call printf
movq %rbp, %rsp
popq %rbp
ret
.size multInts,.-multInts
What I've tried to do is just move the printf instruction to before the loop, but it gives me a segmentation fault when trying to run the loop because %rdi and %rsi contain the addresses of the arrays that need to be used in the loop. How do I get around that and which registers should I use? Also, how do I call printf within the loop?
The output should look something like this:
Products:
200
-925
1386
-2928
-520
arrays assembly printf x86-64
add a comment |
I'm having trouble figuring out how to use printf correctly in this function. So the function is called multInts and is supposed to multiply the first element of the first array with the first element of the second array and continue through the whole array. However, the lab instructions specify that I can't call printf in the main function. So, I need to print out the word "Products:n" and then in each new line after that, print out the product. I don't know how to use printf within the loop, however. The instructor said that we should "call printf in the loop after calculating product" and also to "save and restore caller-save registers before calling printf," but I'm not sure what that means.
Here's what my code looks like so far:
.file "lab4.s"
.section .rodata
.LC0:
.string "Products: n"
.LC1:
.string "%i n"
.data
sizeIntArrays:
.long 5
sizeShortArrays:
.word 4
intArray1:
.long 10
.long 25
.long 33
.long 48
.long 52
intArray2:
.long 20
.long -37
.long 42
.long -61
.long -10
##### MAIN FUNCTION
.text
.globl main
.type main,@function
main:
pushq %rbp
movq %rsp, %rbp
#pass parameters and call other functions
movl sizeIntArrays, %edi #move size to registers for 1st parameter
leaq intArray1, %rsi #load effective address of intArray1 to register rsi
leaq intArray2, %rdx #load effective address of intArray2 to register rdx
call multInts #call multInts function
movq $0, %rax #return 0 to caller
movq %rbp, %rsp
popq %rbp
ret
.size main,.-main
##### MULTINTS
.globl multInts
.type multInts,@function
multInts:
pushq %rbp
movq %rsp, %rbp
#add code here for what the functions should do
movq $0, %r8 #initialize index for array access in caller save reg
movq $0, %rcx #initialize 8 byte caller save result reg
loop0:
cmpl %r8d, %edi #compare index to size
je exit0 #exit if equal
movslq (%rsi,%r8,4),%rax # Load a long into RAX
movslq (%rdx,%r8,4),%r11 # Load a long into R11
imulq %r11, %rax # RAX *= R11
addq %rax, %rcx # RCX += RAX
incq %r8 #increment index
jmp loop0
exit0:
movq $.LC0, %rdi
movq %rcx, %rsi
movq $0, %rax
call printf
movq %rbp, %rsp
popq %rbp
ret
.size multInts,.-multInts
What I've tried to do is just move the printf instruction to before the loop, but it gives me a segmentation fault when trying to run the loop because %rdi and %rsi contain the addresses of the arrays that need to be used in the loop. How do I get around that and which registers should I use? Also, how do I call printf within the loop?
The output should look something like this:
Products:
200
-925
1386
-2928
-520
arrays assembly printf x86-64
I'm having trouble figuring out how to use printf correctly in this function. So the function is called multInts and is supposed to multiply the first element of the first array with the first element of the second array and continue through the whole array. However, the lab instructions specify that I can't call printf in the main function. So, I need to print out the word "Products:n" and then in each new line after that, print out the product. I don't know how to use printf within the loop, however. The instructor said that we should "call printf in the loop after calculating product" and also to "save and restore caller-save registers before calling printf," but I'm not sure what that means.
Here's what my code looks like so far:
.file "lab4.s"
.section .rodata
.LC0:
.string "Products: n"
.LC1:
.string "%i n"
.data
sizeIntArrays:
.long 5
sizeShortArrays:
.word 4
intArray1:
.long 10
.long 25
.long 33
.long 48
.long 52
intArray2:
.long 20
.long -37
.long 42
.long -61
.long -10
##### MAIN FUNCTION
.text
.globl main
.type main,@function
main:
pushq %rbp
movq %rsp, %rbp
#pass parameters and call other functions
movl sizeIntArrays, %edi #move size to registers for 1st parameter
leaq intArray1, %rsi #load effective address of intArray1 to register rsi
leaq intArray2, %rdx #load effective address of intArray2 to register rdx
call multInts #call multInts function
movq $0, %rax #return 0 to caller
movq %rbp, %rsp
popq %rbp
ret
.size main,.-main
##### MULTINTS
.globl multInts
.type multInts,@function
multInts:
pushq %rbp
movq %rsp, %rbp
#add code here for what the functions should do
movq $0, %r8 #initialize index for array access in caller save reg
movq $0, %rcx #initialize 8 byte caller save result reg
loop0:
cmpl %r8d, %edi #compare index to size
je exit0 #exit if equal
movslq (%rsi,%r8,4),%rax # Load a long into RAX
movslq (%rdx,%r8,4),%r11 # Load a long into R11
imulq %r11, %rax # RAX *= R11
addq %rax, %rcx # RCX += RAX
incq %r8 #increment index
jmp loop0
exit0:
movq $.LC0, %rdi
movq %rcx, %rsi
movq $0, %rax
call printf
movq %rbp, %rsp
popq %rbp
ret
.size multInts,.-multInts
What I've tried to do is just move the printf instruction to before the loop, but it gives me a segmentation fault when trying to run the loop because %rdi and %rsi contain the addresses of the arrays that need to be used in the loop. How do I get around that and which registers should I use? Also, how do I call printf within the loop?
The output should look something like this:
Products:
200
-925
1386
-2928
-520
arrays assembly printf x86-64
arrays assembly printf x86-64
asked Nov 26 '18 at 2:28
AishaAisha
184
184
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
The easiest way to protect a register from being accessed by a subroutine is to push
it. According to the ABI V calling convention printf
may change any register except RBX
, RBP
, R12–R15
. The registers you need to preserve are RAX
, RDX
, RSI
, RDI
, R8
and R11
(RCX
is no longer needed), so push
before the call to printf
and pop
them afterwards:
pushq %rax
pushq %rdx
pushq %rsi
pushq %rdi
pushq %r8
pushq %r11
movq $.LC1, %rdi
movq %rax, %rsi
movq $0, %rax
call printf
popq %r11
popq %r8
popq %rdi
popq %rsi
popq %rdx
popq %rax
Now, you can copy the block into the loop. For each printf, you have to think about what needs to be secured:
...
multInts:
pushq %rbp
movq %rsp, %rbp
#add code here for what the functions should do
pushq %rdx # Preserve registers
pushq %rdi
pushq %rsi
movq $.LC0, %rdi # Format string (no further values)
movq $0, %rax # No vector registers used
call printf # Call C function
popq %rsi # Restore registers
popq %rdi
popq %rdx
movq $0, %r8 #initialize index for array access in caller save reg
loop0:
cmpl %r8d, %edi #compare index to size
je exit0 #exit if equal
movslq (%rsi,%r8,4),%rax # Load a long into RAX
movslq (%rdx,%r8,4),%r11 # Load a long into R11
imulq %r11, %rax # RAX *= R11
pushq %rax # Preserve registers
pushq %rdx
pushq %rsi
pushq %rdi
pushq %r8
pushq %r11
movq $.LC1, %rdi # Format string
movq %rax, %rsi # Value
movq $0, %rax # No vector registers used
call printf # Call C function
popq %r11 # Restore registers
popq %r8
popq %rdi
popq %rsi
popq %rdx
popq %rax
incq %r8 #increment index
jmp loop0
exit0:
movq %rbp, %rsp
popq %rbp
ret
...
BTW: .string "%i n"
will force printf
only to process the lower 32-bit of RDI
. Use .string %lli n
instead.
add a comment |
Assume that printf
clobbers all the call-clobbered registers (What registers are preserved through a linux x86-64 function call), and use different ones for anything that needs to survive from one iteration of the loop to the next.
Look at compiler output for an example: write a version of your loop in C and compile it with -Og
.
Obviously you need to move the instructions that set up the args in registers
(like the format string) along with the call printf
.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53474035%2fusing-printf-before-and-inside-a-loop-x86-64-assembly%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
The easiest way to protect a register from being accessed by a subroutine is to push
it. According to the ABI V calling convention printf
may change any register except RBX
, RBP
, R12–R15
. The registers you need to preserve are RAX
, RDX
, RSI
, RDI
, R8
and R11
(RCX
is no longer needed), so push
before the call to printf
and pop
them afterwards:
pushq %rax
pushq %rdx
pushq %rsi
pushq %rdi
pushq %r8
pushq %r11
movq $.LC1, %rdi
movq %rax, %rsi
movq $0, %rax
call printf
popq %r11
popq %r8
popq %rdi
popq %rsi
popq %rdx
popq %rax
Now, you can copy the block into the loop. For each printf, you have to think about what needs to be secured:
...
multInts:
pushq %rbp
movq %rsp, %rbp
#add code here for what the functions should do
pushq %rdx # Preserve registers
pushq %rdi
pushq %rsi
movq $.LC0, %rdi # Format string (no further values)
movq $0, %rax # No vector registers used
call printf # Call C function
popq %rsi # Restore registers
popq %rdi
popq %rdx
movq $0, %r8 #initialize index for array access in caller save reg
loop0:
cmpl %r8d, %edi #compare index to size
je exit0 #exit if equal
movslq (%rsi,%r8,4),%rax # Load a long into RAX
movslq (%rdx,%r8,4),%r11 # Load a long into R11
imulq %r11, %rax # RAX *= R11
pushq %rax # Preserve registers
pushq %rdx
pushq %rsi
pushq %rdi
pushq %r8
pushq %r11
movq $.LC1, %rdi # Format string
movq %rax, %rsi # Value
movq $0, %rax # No vector registers used
call printf # Call C function
popq %r11 # Restore registers
popq %r8
popq %rdi
popq %rsi
popq %rdx
popq %rax
incq %r8 #increment index
jmp loop0
exit0:
movq %rbp, %rsp
popq %rbp
ret
...
BTW: .string "%i n"
will force printf
only to process the lower 32-bit of RDI
. Use .string %lli n
instead.
add a comment |
The easiest way to protect a register from being accessed by a subroutine is to push
it. According to the ABI V calling convention printf
may change any register except RBX
, RBP
, R12–R15
. The registers you need to preserve are RAX
, RDX
, RSI
, RDI
, R8
and R11
(RCX
is no longer needed), so push
before the call to printf
and pop
them afterwards:
pushq %rax
pushq %rdx
pushq %rsi
pushq %rdi
pushq %r8
pushq %r11
movq $.LC1, %rdi
movq %rax, %rsi
movq $0, %rax
call printf
popq %r11
popq %r8
popq %rdi
popq %rsi
popq %rdx
popq %rax
Now, you can copy the block into the loop. For each printf, you have to think about what needs to be secured:
...
multInts:
pushq %rbp
movq %rsp, %rbp
#add code here for what the functions should do
pushq %rdx # Preserve registers
pushq %rdi
pushq %rsi
movq $.LC0, %rdi # Format string (no further values)
movq $0, %rax # No vector registers used
call printf # Call C function
popq %rsi # Restore registers
popq %rdi
popq %rdx
movq $0, %r8 #initialize index for array access in caller save reg
loop0:
cmpl %r8d, %edi #compare index to size
je exit0 #exit if equal
movslq (%rsi,%r8,4),%rax # Load a long into RAX
movslq (%rdx,%r8,4),%r11 # Load a long into R11
imulq %r11, %rax # RAX *= R11
pushq %rax # Preserve registers
pushq %rdx
pushq %rsi
pushq %rdi
pushq %r8
pushq %r11
movq $.LC1, %rdi # Format string
movq %rax, %rsi # Value
movq $0, %rax # No vector registers used
call printf # Call C function
popq %r11 # Restore registers
popq %r8
popq %rdi
popq %rsi
popq %rdx
popq %rax
incq %r8 #increment index
jmp loop0
exit0:
movq %rbp, %rsp
popq %rbp
ret
...
BTW: .string "%i n"
will force printf
only to process the lower 32-bit of RDI
. Use .string %lli n
instead.
add a comment |
The easiest way to protect a register from being accessed by a subroutine is to push
it. According to the ABI V calling convention printf
may change any register except RBX
, RBP
, R12–R15
. The registers you need to preserve are RAX
, RDX
, RSI
, RDI
, R8
and R11
(RCX
is no longer needed), so push
before the call to printf
and pop
them afterwards:
pushq %rax
pushq %rdx
pushq %rsi
pushq %rdi
pushq %r8
pushq %r11
movq $.LC1, %rdi
movq %rax, %rsi
movq $0, %rax
call printf
popq %r11
popq %r8
popq %rdi
popq %rsi
popq %rdx
popq %rax
Now, you can copy the block into the loop. For each printf, you have to think about what needs to be secured:
...
multInts:
pushq %rbp
movq %rsp, %rbp
#add code here for what the functions should do
pushq %rdx # Preserve registers
pushq %rdi
pushq %rsi
movq $.LC0, %rdi # Format string (no further values)
movq $0, %rax # No vector registers used
call printf # Call C function
popq %rsi # Restore registers
popq %rdi
popq %rdx
movq $0, %r8 #initialize index for array access in caller save reg
loop0:
cmpl %r8d, %edi #compare index to size
je exit0 #exit if equal
movslq (%rsi,%r8,4),%rax # Load a long into RAX
movslq (%rdx,%r8,4),%r11 # Load a long into R11
imulq %r11, %rax # RAX *= R11
pushq %rax # Preserve registers
pushq %rdx
pushq %rsi
pushq %rdi
pushq %r8
pushq %r11
movq $.LC1, %rdi # Format string
movq %rax, %rsi # Value
movq $0, %rax # No vector registers used
call printf # Call C function
popq %r11 # Restore registers
popq %r8
popq %rdi
popq %rsi
popq %rdx
popq %rax
incq %r8 #increment index
jmp loop0
exit0:
movq %rbp, %rsp
popq %rbp
ret
...
BTW: .string "%i n"
will force printf
only to process the lower 32-bit of RDI
. Use .string %lli n
instead.
The easiest way to protect a register from being accessed by a subroutine is to push
it. According to the ABI V calling convention printf
may change any register except RBX
, RBP
, R12–R15
. The registers you need to preserve are RAX
, RDX
, RSI
, RDI
, R8
and R11
(RCX
is no longer needed), so push
before the call to printf
and pop
them afterwards:
pushq %rax
pushq %rdx
pushq %rsi
pushq %rdi
pushq %r8
pushq %r11
movq $.LC1, %rdi
movq %rax, %rsi
movq $0, %rax
call printf
popq %r11
popq %r8
popq %rdi
popq %rsi
popq %rdx
popq %rax
Now, you can copy the block into the loop. For each printf, you have to think about what needs to be secured:
...
multInts:
pushq %rbp
movq %rsp, %rbp
#add code here for what the functions should do
pushq %rdx # Preserve registers
pushq %rdi
pushq %rsi
movq $.LC0, %rdi # Format string (no further values)
movq $0, %rax # No vector registers used
call printf # Call C function
popq %rsi # Restore registers
popq %rdi
popq %rdx
movq $0, %r8 #initialize index for array access in caller save reg
loop0:
cmpl %r8d, %edi #compare index to size
je exit0 #exit if equal
movslq (%rsi,%r8,4),%rax # Load a long into RAX
movslq (%rdx,%r8,4),%r11 # Load a long into R11
imulq %r11, %rax # RAX *= R11
pushq %rax # Preserve registers
pushq %rdx
pushq %rsi
pushq %rdi
pushq %r8
pushq %r11
movq $.LC1, %rdi # Format string
movq %rax, %rsi # Value
movq $0, %rax # No vector registers used
call printf # Call C function
popq %r11 # Restore registers
popq %r8
popq %rdi
popq %rsi
popq %rdx
popq %rax
incq %r8 #increment index
jmp loop0
exit0:
movq %rbp, %rsp
popq %rbp
ret
...
BTW: .string "%i n"
will force printf
only to process the lower 32-bit of RDI
. Use .string %lli n
instead.
answered Nov 26 '18 at 19:27
rkhbrkhb
11.4k72142
11.4k72142
add a comment |
add a comment |
Assume that printf
clobbers all the call-clobbered registers (What registers are preserved through a linux x86-64 function call), and use different ones for anything that needs to survive from one iteration of the loop to the next.
Look at compiler output for an example: write a version of your loop in C and compile it with -Og
.
Obviously you need to move the instructions that set up the args in registers
(like the format string) along with the call printf
.
add a comment |
Assume that printf
clobbers all the call-clobbered registers (What registers are preserved through a linux x86-64 function call), and use different ones for anything that needs to survive from one iteration of the loop to the next.
Look at compiler output for an example: write a version of your loop in C and compile it with -Og
.
Obviously you need to move the instructions that set up the args in registers
(like the format string) along with the call printf
.
add a comment |
Assume that printf
clobbers all the call-clobbered registers (What registers are preserved through a linux x86-64 function call), and use different ones for anything that needs to survive from one iteration of the loop to the next.
Look at compiler output for an example: write a version of your loop in C and compile it with -Og
.
Obviously you need to move the instructions that set up the args in registers
(like the format string) along with the call printf
.
Assume that printf
clobbers all the call-clobbered registers (What registers are preserved through a linux x86-64 function call), and use different ones for anything that needs to survive from one iteration of the loop to the next.
Look at compiler output for an example: write a version of your loop in C and compile it with -Og
.
Obviously you need to move the instructions that set up the args in registers
(like the format string) along with the call printf
.
answered Nov 26 '18 at 2:43
Peter CordesPeter Cordes
130k18196334
130k18196334
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53474035%2fusing-printf-before-and-inside-a-loop-x86-64-assembly%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown