How can I give this perspective with Tikz?












3















I am trying to complete the image of the figure: I know how to perform the dashed circle and the legs of the table. The problem is to draw the upper part of the table. Can you give me a hint of how to do it?



Thank you!



image of a table viewed head on in perspective










share|improve this question

























  • Can you show us the code you already have?

    – Sigur
    7 hours ago











  • As far as I know, the most straightforward way will be to employ this great answer.

    – marmot
    7 hours ago











  • I am just starting... marmot, that seems really difficult!!

    – Eduardo
    7 hours ago






  • 1





    Yes, unfortunately these cool macros are not yet part of a package or library. So for the time being you would still copy the preamble. Notice that once you copied it, the rest will not be difficult.

    – marmot
    6 hours ago
















3















I am trying to complete the image of the figure: I know how to perform the dashed circle and the legs of the table. The problem is to draw the upper part of the table. Can you give me a hint of how to do it?



Thank you!



image of a table viewed head on in perspective










share|improve this question

























  • Can you show us the code you already have?

    – Sigur
    7 hours ago











  • As far as I know, the most straightforward way will be to employ this great answer.

    – marmot
    7 hours ago











  • I am just starting... marmot, that seems really difficult!!

    – Eduardo
    7 hours ago






  • 1





    Yes, unfortunately these cool macros are not yet part of a package or library. So for the time being you would still copy the preamble. Notice that once you copied it, the rest will not be difficult.

    – marmot
    6 hours ago














3












3








3


2






I am trying to complete the image of the figure: I know how to perform the dashed circle and the legs of the table. The problem is to draw the upper part of the table. Can you give me a hint of how to do it?



Thank you!



image of a table viewed head on in perspective










share|improve this question
















I am trying to complete the image of the figure: I know how to perform the dashed circle and the legs of the table. The problem is to draw the upper part of the table. Can you give me a hint of how to do it?



Thank you!



image of a table viewed head on in perspective







tikz-pgf






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 7 hours ago









Paul Stanley

14.4k42848




14.4k42848










asked 7 hours ago









EduardoEduardo

725




725













  • Can you show us the code you already have?

    – Sigur
    7 hours ago











  • As far as I know, the most straightforward way will be to employ this great answer.

    – marmot
    7 hours ago











  • I am just starting... marmot, that seems really difficult!!

    – Eduardo
    7 hours ago






  • 1





    Yes, unfortunately these cool macros are not yet part of a package or library. So for the time being you would still copy the preamble. Notice that once you copied it, the rest will not be difficult.

    – marmot
    6 hours ago



















  • Can you show us the code you already have?

    – Sigur
    7 hours ago











  • As far as I know, the most straightforward way will be to employ this great answer.

    – marmot
    7 hours ago











  • I am just starting... marmot, that seems really difficult!!

    – Eduardo
    7 hours ago






  • 1





    Yes, unfortunately these cool macros are not yet part of a package or library. So for the time being you would still copy the preamble. Notice that once you copied it, the rest will not be difficult.

    – marmot
    6 hours ago

















Can you show us the code you already have?

– Sigur
7 hours ago





Can you show us the code you already have?

– Sigur
7 hours ago













As far as I know, the most straightforward way will be to employ this great answer.

– marmot
7 hours ago





As far as I know, the most straightforward way will be to employ this great answer.

– marmot
7 hours ago













I am just starting... marmot, that seems really difficult!!

– Eduardo
7 hours ago





I am just starting... marmot, that seems really difficult!!

– Eduardo
7 hours ago




1




1





Yes, unfortunately these cool macros are not yet part of a package or library. So for the time being you would still copy the preamble. Notice that once you copied it, the rest will not be difficult.

– marmot
6 hours ago





Yes, unfortunately these cool macros are not yet part of a package or library. So for the time being you would still copy the preamble. Notice that once you copied it, the rest will not be difficult.

– marmot
6 hours ago










1 Answer
1






active

oldest

votes


















5














All credits go to Max' answer. All I do is to truncate his general projection to a simpler case, which may help to understand better what's going on here. Max' picture shows very nicely what his code does: it transforms the objects in such a way that the edges that are parallel to the x axis meet in p, the ones parallel to the y axis in q and the ones parallel to the z axis in r. (Yes, that's just a sloppy definition of "vanishing points".) However, in order to reproduce something like your screenshot, we only need to play with q, which is what the following animation does.



documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{shapes.geometric,intersections}
usepgfmodule{nonlineartransformations}
% Max magic
makeatletter
% the first part is not in use here
deftikz@scan@transform@one@point#1{%
tikz@scan@one@pointpgf@process#1%
pgf@pos@transform{pgf@x}{pgf@y}}
tikzset{%
grid source opposite corners/.code args={#1and#2}{%
pgfextract@processtikz@transform@source@southwest{%
tikz@scan@transform@one@point{#1}}%
pgfextract@processtikz@transform@source@northeast{%
tikz@scan@transform@one@point{#2}}%
},
grid target corners/.code args={#1--#2--#3--#4}{%
pgfextract@processtikz@transform@target@southwest{%
tikz@scan@transform@one@point{#1}}%
pgfextract@processtikz@transform@target@southeast{%
tikz@scan@transform@one@point{#2}}%
pgfextract@processtikz@transform@target@northeast{%
tikz@scan@transform@one@point{#3}}%
pgfextract@processtikz@transform@target@northwest{%
tikz@scan@transform@one@point{#4}}%
}
}

deftikzgridtransform{%
pgfextract@processtikz@current@point{}%
pgf@process{%
pgfpointdiff{tikz@transform@source@southwest}%
{tikz@transform@source@northeast}%
}%
pgf@xc=pgf@xpgf@yc=pgf@y%
pgf@process{%
pgfpointdiff{tikz@transform@source@southwest}{tikz@current@point}%
}%
pgfmathparse{pgf@x/pgf@xc}lettikz@tx=pgfmathresult%
pgfmathparse{pgf@y/pgf@yc}lettikz@ty=pgfmathresult%
%
pgfpointlineattime{tikz@ty}{%
pgfpointlineattime{tikz@tx}{tikz@transform@target@southwest}%
{tikz@transform@target@southeast}}{%
pgfpointlineattime{tikz@tx}{tikz@transform@target@northwest}%
{tikz@transform@target@northeast}}%
}

% Initialize H matrix for perspective view
pgfmathsetmacroH@tpp@aa{1}pgfmathsetmacroH@tpp@ab{0}pgfmathsetmacroH@tpp@ac{0}%pgfmathsetmacroH@tpp@ad{0}
pgfmathsetmacroH@tpp@ba{0}pgfmathsetmacroH@tpp@bb{1}pgfmathsetmacroH@tpp@bc{0}%pgfmathsetmacroH@tpp@bd{0}
pgfmathsetmacroH@tpp@ca{0}pgfmathsetmacroH@tpp@cb{0}pgfmathsetmacroH@tpp@cc{1}%pgfmathsetmacroH@tpp@cd{0}
pgfmathsetmacroH@tpp@da{0}pgfmathsetmacroH@tpp@db{0}pgfmathsetmacroH@tpp@dc{0}%pgfmathsetmacroH@tpp@dd{1}

%Initialize H matrix for main rotation
pgfmathsetmacroH@rot@aa{1}pgfmathsetmacroH@rot@ab{0}pgfmathsetmacroH@rot@ac{0}%pgfmathsetmacroH@rot@ad{0}
pgfmathsetmacroH@rot@ba{0}pgfmathsetmacroH@rot@bb{1}pgfmathsetmacroH@rot@bc{0}%pgfmathsetmacroH@rot@bd{0}
pgfmathsetmacroH@rot@ca{0}pgfmathsetmacroH@rot@cb{0}pgfmathsetmacroH@rot@cc{1}%pgfmathsetmacroH@rot@cd{0}
%pgfmathsetmacroH@rot@da{0}pgfmathsetmacroH@rot@db{0}pgfmathsetmacroH@rot@dc{0}pgfmathsetmacroH@rot@dd{1}

pgfkeys{
/three point perspective/.cd,
p/.code args={(#1,#2,#3)}{
pgfmathparse{int(round(#1))}
ifnumpgfmathresult=0else
pgfmathsetmacroH@tpp@ba{#2/#1}
pgfmathsetmacroH@tpp@ca{#3/#1}
pgfmathsetmacroH@tpp@da{ 1/#1}
coordinate (vp-p) at (#1,#2,#3);
fi
},
q/.code args={(#1,#2,#3)}{
pgfmathparse{int(round(#2))}
ifnumpgfmathresult=0else
pgfmathsetmacroH@tpp@ab{#1/#2}
pgfmathsetmacroH@tpp@cb{#3/#2}
pgfmathsetmacroH@tpp@db{ 1/#2}
coordinate (vp-q) at (#1,#2,#3);
fi
},
r/.code args={(#1,#2,#3)}{
pgfmathparse{int(round(#3))}
ifnumpgfmathresult=0else
pgfmathsetmacroH@tpp@ac{#1/#3}
pgfmathsetmacroH@tpp@bc{#2/#3}
pgfmathsetmacroH@tpp@dc{ 1/#3}
coordinate (vp-r) at (#1,#2,#3);
fi
},
coordinate/.code args={#1,#2,#3}{
pgfmathsetmacrotpp@x{#1} %<- Max' fix
pgfmathsetmacrotpp@y{#2}
pgfmathsetmacrotpp@z{#3}
},
}

tikzset{
view/.code 2 args={
pgfmathsetmacrorot@main@theta{#1}
pgfmathsetmacrorot@main@phi{#2}
% Row 1
pgfmathsetmacroH@rot@aa{cos(rot@main@phi)}
pgfmathsetmacroH@rot@ab{sin(rot@main@phi)}
pgfmathsetmacroH@rot@ac{0}
% Row 2
pgfmathsetmacroH@rot@ba{-cos(rot@main@theta)*sin(rot@main@phi)}
pgfmathsetmacroH@rot@bb{cos(rot@main@phi)*cos(rot@main@theta)}
pgfmathsetmacroH@rot@bc{sin(rot@main@theta)}
% Row 3
pgfmathsetmacroH@m@ca{sin(rot@main@phi)*sin(rot@main@theta)}
pgfmathsetmacroH@m@cb{-cos(rot@main@phi)*sin(rot@main@theta)}
pgfmathsetmacroH@m@cc{cos(rot@main@theta)}
% Set vector values
pgfmathsetmacrovec@x@x{H@rot@aa}
pgfmathsetmacrovec@y@x{H@rot@ab}
pgfmathsetmacrovec@z@x{H@rot@ac}
pgfmathsetmacrovec@x@y{H@rot@ba}
pgfmathsetmacrovec@y@y{H@rot@bb}
pgfmathsetmacrovec@z@y{H@rot@bc}
% Set pgf vectors
pgfsetxvec{pgfpoint{vec@x@x cm}{vec@x@y cm}}
pgfsetyvec{pgfpoint{vec@y@x cm}{vec@y@y cm}}
pgfsetzvec{pgfpoint{vec@z@x cm}{vec@z@y cm}}
},
}

tikzset{
perspective/.code={pgfkeys{/three point perspective/.cd,#1}},
perspective/.default={p={(15,0,0)},q={(0,15,0)},r={(0,0,50)}},
}

tikzdeclarecoordinatesystem{three point perspective}{
pgfkeys{/three point perspective/.cd,coordinate={#1}}
pgfmathsetmacrotemp@p@w{H@tpp@da*tpp@x + H@tpp@db*tpp@y + H@tpp@dc*tpp@z + 1}
pgfmathsetmacrotemp@p@x{(H@tpp@aa*tpp@x + H@tpp@ab*tpp@y + H@tpp@ac*tpp@z)/temp@p@w}
pgfmathsetmacrotemp@p@y{(H@tpp@ba*tpp@x + H@tpp@bb*tpp@y + H@tpp@bc*tpp@z)/temp@p@w}
pgfmathsetmacrotemp@p@z{(H@tpp@ca*tpp@x + H@tpp@cb*tpp@y + H@tpp@cc*tpp@z)/temp@p@w}
pgfpointxyz{temp@p@x}{temp@p@y}{temp@p@z}
}
tikzaliascoordinatesystem{tpp}{three point perspective}

makeatother

begin{document}
tdplotsetmaincoords{70}{0}
foreach X [evaluate=X as vq using {X*X}]in {2,2.1,...,4,3.9,3.8,...,2.1}{
begin{tikzpicture}[scale=pi,%tdplot_main_coords
view={tdplotmaintheta}{tdplotmainphi},
perspective={
p = {(0,0,10)},
q = {(0,vq,1.25)},
}
]
path[tdplot_screen_coords] (-2,-1) rectangle (2,2);
foreach Y in {-1,1}
{foreach X in {1,-1}
{shade[top color=gray!50,bottom color=gray!60,middle color=gray!20,
shading angle=90] (tpp cs:X*0.9,Y*0.9,1) -- (tpp cs:X*0.89,Y*0.9,0)
to[bend left=X*12]
(tpp cs:X*0.81,Y*0.9,0) -- (tpp cs:X*0.8,Y*0.8,1);}}
node[cylinder,draw,minimum width=4mm,minimum height=5mm,aspect=0.5,inner
sep=3pt,rotate=90,cylinder uses custom fill,cylinder end fill=gray!50!black,
cylinder body fill=black,label={[font=sffamily]below left:2}] (c2) at
(tpp cs:0,0,0.1){};
draw[name path=line] (c2.top|-c2.before top) -- (tpp cs:0,0,1);
draw[gray!50,fill=gray!50]
(tpp cs:-1,-1,1) -- (tpp cs:1,-1,1) -- (tpp cs:1,1,1) -- (tpp cs:-1,1,1) -- cycle;
draw[gray!50,fill=white,thick]
(tpp cs:-1,-1,1) -- (tpp cs:1,-1,1)
-- (tpp cs:1,-1,0.9) -- (tpp cs:-1,-1,0.9) -- cycle;

draw[dashed,fill=gray!25,name path=circle] plot[variable=x,smooth,domain=0:360]
(tpp cs:{0.8*cos(x)},{0.8*sin(x)},1);
node[cylinder,draw,minimum width=4mm,minimum height=2mm,aspect=0.5,inner
sep=3pt,rotate=85,cylinder uses custom fill,cylinder end fill=gray!50!black,
cylinder body fill=black] (c1) at
(tpp cs:0.4,0.1,1.2){};
node[anchor=north,font=sffamily] at ([yshift=-1mm]c1){1};
draw[dashed,name intersections={of=circle and line}] (intersection-1)
-- (tpp cs:0,0,1);
draw (tpp cs:0,0,1) -- (c1.west);
end{tikzpicture}}
end{document}


enter image description here



And if you replace the loop by



 foreach X [evaluate=X as vq using {X*X}]in {3.5}{


say, you'll get.



enter image description here



Of course, you may find that another choice of parameters reproduces your screen shot more closely. Apart from the entries of q you can also play with the view angles.






share|improve this answer

























    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "85"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f470460%2fhow-can-i-give-this-perspective-with-tikz%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5














    All credits go to Max' answer. All I do is to truncate his general projection to a simpler case, which may help to understand better what's going on here. Max' picture shows very nicely what his code does: it transforms the objects in such a way that the edges that are parallel to the x axis meet in p, the ones parallel to the y axis in q and the ones parallel to the z axis in r. (Yes, that's just a sloppy definition of "vanishing points".) However, in order to reproduce something like your screenshot, we only need to play with q, which is what the following animation does.



    documentclass[tikz,border=3.14mm]{standalone}
    usepackage{tikz-3dplot}
    usetikzlibrary{shapes.geometric,intersections}
    usepgfmodule{nonlineartransformations}
    % Max magic
    makeatletter
    % the first part is not in use here
    deftikz@scan@transform@one@point#1{%
    tikz@scan@one@pointpgf@process#1%
    pgf@pos@transform{pgf@x}{pgf@y}}
    tikzset{%
    grid source opposite corners/.code args={#1and#2}{%
    pgfextract@processtikz@transform@source@southwest{%
    tikz@scan@transform@one@point{#1}}%
    pgfextract@processtikz@transform@source@northeast{%
    tikz@scan@transform@one@point{#2}}%
    },
    grid target corners/.code args={#1--#2--#3--#4}{%
    pgfextract@processtikz@transform@target@southwest{%
    tikz@scan@transform@one@point{#1}}%
    pgfextract@processtikz@transform@target@southeast{%
    tikz@scan@transform@one@point{#2}}%
    pgfextract@processtikz@transform@target@northeast{%
    tikz@scan@transform@one@point{#3}}%
    pgfextract@processtikz@transform@target@northwest{%
    tikz@scan@transform@one@point{#4}}%
    }
    }

    deftikzgridtransform{%
    pgfextract@processtikz@current@point{}%
    pgf@process{%
    pgfpointdiff{tikz@transform@source@southwest}%
    {tikz@transform@source@northeast}%
    }%
    pgf@xc=pgf@xpgf@yc=pgf@y%
    pgf@process{%
    pgfpointdiff{tikz@transform@source@southwest}{tikz@current@point}%
    }%
    pgfmathparse{pgf@x/pgf@xc}lettikz@tx=pgfmathresult%
    pgfmathparse{pgf@y/pgf@yc}lettikz@ty=pgfmathresult%
    %
    pgfpointlineattime{tikz@ty}{%
    pgfpointlineattime{tikz@tx}{tikz@transform@target@southwest}%
    {tikz@transform@target@southeast}}{%
    pgfpointlineattime{tikz@tx}{tikz@transform@target@northwest}%
    {tikz@transform@target@northeast}}%
    }

    % Initialize H matrix for perspective view
    pgfmathsetmacroH@tpp@aa{1}pgfmathsetmacroH@tpp@ab{0}pgfmathsetmacroH@tpp@ac{0}%pgfmathsetmacroH@tpp@ad{0}
    pgfmathsetmacroH@tpp@ba{0}pgfmathsetmacroH@tpp@bb{1}pgfmathsetmacroH@tpp@bc{0}%pgfmathsetmacroH@tpp@bd{0}
    pgfmathsetmacroH@tpp@ca{0}pgfmathsetmacroH@tpp@cb{0}pgfmathsetmacroH@tpp@cc{1}%pgfmathsetmacroH@tpp@cd{0}
    pgfmathsetmacroH@tpp@da{0}pgfmathsetmacroH@tpp@db{0}pgfmathsetmacroH@tpp@dc{0}%pgfmathsetmacroH@tpp@dd{1}

    %Initialize H matrix for main rotation
    pgfmathsetmacroH@rot@aa{1}pgfmathsetmacroH@rot@ab{0}pgfmathsetmacroH@rot@ac{0}%pgfmathsetmacroH@rot@ad{0}
    pgfmathsetmacroH@rot@ba{0}pgfmathsetmacroH@rot@bb{1}pgfmathsetmacroH@rot@bc{0}%pgfmathsetmacroH@rot@bd{0}
    pgfmathsetmacroH@rot@ca{0}pgfmathsetmacroH@rot@cb{0}pgfmathsetmacroH@rot@cc{1}%pgfmathsetmacroH@rot@cd{0}
    %pgfmathsetmacroH@rot@da{0}pgfmathsetmacroH@rot@db{0}pgfmathsetmacroH@rot@dc{0}pgfmathsetmacroH@rot@dd{1}

    pgfkeys{
    /three point perspective/.cd,
    p/.code args={(#1,#2,#3)}{
    pgfmathparse{int(round(#1))}
    ifnumpgfmathresult=0else
    pgfmathsetmacroH@tpp@ba{#2/#1}
    pgfmathsetmacroH@tpp@ca{#3/#1}
    pgfmathsetmacroH@tpp@da{ 1/#1}
    coordinate (vp-p) at (#1,#2,#3);
    fi
    },
    q/.code args={(#1,#2,#3)}{
    pgfmathparse{int(round(#2))}
    ifnumpgfmathresult=0else
    pgfmathsetmacroH@tpp@ab{#1/#2}
    pgfmathsetmacroH@tpp@cb{#3/#2}
    pgfmathsetmacroH@tpp@db{ 1/#2}
    coordinate (vp-q) at (#1,#2,#3);
    fi
    },
    r/.code args={(#1,#2,#3)}{
    pgfmathparse{int(round(#3))}
    ifnumpgfmathresult=0else
    pgfmathsetmacroH@tpp@ac{#1/#3}
    pgfmathsetmacroH@tpp@bc{#2/#3}
    pgfmathsetmacroH@tpp@dc{ 1/#3}
    coordinate (vp-r) at (#1,#2,#3);
    fi
    },
    coordinate/.code args={#1,#2,#3}{
    pgfmathsetmacrotpp@x{#1} %<- Max' fix
    pgfmathsetmacrotpp@y{#2}
    pgfmathsetmacrotpp@z{#3}
    },
    }

    tikzset{
    view/.code 2 args={
    pgfmathsetmacrorot@main@theta{#1}
    pgfmathsetmacrorot@main@phi{#2}
    % Row 1
    pgfmathsetmacroH@rot@aa{cos(rot@main@phi)}
    pgfmathsetmacroH@rot@ab{sin(rot@main@phi)}
    pgfmathsetmacroH@rot@ac{0}
    % Row 2
    pgfmathsetmacroH@rot@ba{-cos(rot@main@theta)*sin(rot@main@phi)}
    pgfmathsetmacroH@rot@bb{cos(rot@main@phi)*cos(rot@main@theta)}
    pgfmathsetmacroH@rot@bc{sin(rot@main@theta)}
    % Row 3
    pgfmathsetmacroH@m@ca{sin(rot@main@phi)*sin(rot@main@theta)}
    pgfmathsetmacroH@m@cb{-cos(rot@main@phi)*sin(rot@main@theta)}
    pgfmathsetmacroH@m@cc{cos(rot@main@theta)}
    % Set vector values
    pgfmathsetmacrovec@x@x{H@rot@aa}
    pgfmathsetmacrovec@y@x{H@rot@ab}
    pgfmathsetmacrovec@z@x{H@rot@ac}
    pgfmathsetmacrovec@x@y{H@rot@ba}
    pgfmathsetmacrovec@y@y{H@rot@bb}
    pgfmathsetmacrovec@z@y{H@rot@bc}
    % Set pgf vectors
    pgfsetxvec{pgfpoint{vec@x@x cm}{vec@x@y cm}}
    pgfsetyvec{pgfpoint{vec@y@x cm}{vec@y@y cm}}
    pgfsetzvec{pgfpoint{vec@z@x cm}{vec@z@y cm}}
    },
    }

    tikzset{
    perspective/.code={pgfkeys{/three point perspective/.cd,#1}},
    perspective/.default={p={(15,0,0)},q={(0,15,0)},r={(0,0,50)}},
    }

    tikzdeclarecoordinatesystem{three point perspective}{
    pgfkeys{/three point perspective/.cd,coordinate={#1}}
    pgfmathsetmacrotemp@p@w{H@tpp@da*tpp@x + H@tpp@db*tpp@y + H@tpp@dc*tpp@z + 1}
    pgfmathsetmacrotemp@p@x{(H@tpp@aa*tpp@x + H@tpp@ab*tpp@y + H@tpp@ac*tpp@z)/temp@p@w}
    pgfmathsetmacrotemp@p@y{(H@tpp@ba*tpp@x + H@tpp@bb*tpp@y + H@tpp@bc*tpp@z)/temp@p@w}
    pgfmathsetmacrotemp@p@z{(H@tpp@ca*tpp@x + H@tpp@cb*tpp@y + H@tpp@cc*tpp@z)/temp@p@w}
    pgfpointxyz{temp@p@x}{temp@p@y}{temp@p@z}
    }
    tikzaliascoordinatesystem{tpp}{three point perspective}

    makeatother

    begin{document}
    tdplotsetmaincoords{70}{0}
    foreach X [evaluate=X as vq using {X*X}]in {2,2.1,...,4,3.9,3.8,...,2.1}{
    begin{tikzpicture}[scale=pi,%tdplot_main_coords
    view={tdplotmaintheta}{tdplotmainphi},
    perspective={
    p = {(0,0,10)},
    q = {(0,vq,1.25)},
    }
    ]
    path[tdplot_screen_coords] (-2,-1) rectangle (2,2);
    foreach Y in {-1,1}
    {foreach X in {1,-1}
    {shade[top color=gray!50,bottom color=gray!60,middle color=gray!20,
    shading angle=90] (tpp cs:X*0.9,Y*0.9,1) -- (tpp cs:X*0.89,Y*0.9,0)
    to[bend left=X*12]
    (tpp cs:X*0.81,Y*0.9,0) -- (tpp cs:X*0.8,Y*0.8,1);}}
    node[cylinder,draw,minimum width=4mm,minimum height=5mm,aspect=0.5,inner
    sep=3pt,rotate=90,cylinder uses custom fill,cylinder end fill=gray!50!black,
    cylinder body fill=black,label={[font=sffamily]below left:2}] (c2) at
    (tpp cs:0,0,0.1){};
    draw[name path=line] (c2.top|-c2.before top) -- (tpp cs:0,0,1);
    draw[gray!50,fill=gray!50]
    (tpp cs:-1,-1,1) -- (tpp cs:1,-1,1) -- (tpp cs:1,1,1) -- (tpp cs:-1,1,1) -- cycle;
    draw[gray!50,fill=white,thick]
    (tpp cs:-1,-1,1) -- (tpp cs:1,-1,1)
    -- (tpp cs:1,-1,0.9) -- (tpp cs:-1,-1,0.9) -- cycle;

    draw[dashed,fill=gray!25,name path=circle] plot[variable=x,smooth,domain=0:360]
    (tpp cs:{0.8*cos(x)},{0.8*sin(x)},1);
    node[cylinder,draw,minimum width=4mm,minimum height=2mm,aspect=0.5,inner
    sep=3pt,rotate=85,cylinder uses custom fill,cylinder end fill=gray!50!black,
    cylinder body fill=black] (c1) at
    (tpp cs:0.4,0.1,1.2){};
    node[anchor=north,font=sffamily] at ([yshift=-1mm]c1){1};
    draw[dashed,name intersections={of=circle and line}] (intersection-1)
    -- (tpp cs:0,0,1);
    draw (tpp cs:0,0,1) -- (c1.west);
    end{tikzpicture}}
    end{document}


    enter image description here



    And if you replace the loop by



     foreach X [evaluate=X as vq using {X*X}]in {3.5}{


    say, you'll get.



    enter image description here



    Of course, you may find that another choice of parameters reproduces your screen shot more closely. Apart from the entries of q you can also play with the view angles.






    share|improve this answer






























      5














      All credits go to Max' answer. All I do is to truncate his general projection to a simpler case, which may help to understand better what's going on here. Max' picture shows very nicely what his code does: it transforms the objects in such a way that the edges that are parallel to the x axis meet in p, the ones parallel to the y axis in q and the ones parallel to the z axis in r. (Yes, that's just a sloppy definition of "vanishing points".) However, in order to reproduce something like your screenshot, we only need to play with q, which is what the following animation does.



      documentclass[tikz,border=3.14mm]{standalone}
      usepackage{tikz-3dplot}
      usetikzlibrary{shapes.geometric,intersections}
      usepgfmodule{nonlineartransformations}
      % Max magic
      makeatletter
      % the first part is not in use here
      deftikz@scan@transform@one@point#1{%
      tikz@scan@one@pointpgf@process#1%
      pgf@pos@transform{pgf@x}{pgf@y}}
      tikzset{%
      grid source opposite corners/.code args={#1and#2}{%
      pgfextract@processtikz@transform@source@southwest{%
      tikz@scan@transform@one@point{#1}}%
      pgfextract@processtikz@transform@source@northeast{%
      tikz@scan@transform@one@point{#2}}%
      },
      grid target corners/.code args={#1--#2--#3--#4}{%
      pgfextract@processtikz@transform@target@southwest{%
      tikz@scan@transform@one@point{#1}}%
      pgfextract@processtikz@transform@target@southeast{%
      tikz@scan@transform@one@point{#2}}%
      pgfextract@processtikz@transform@target@northeast{%
      tikz@scan@transform@one@point{#3}}%
      pgfextract@processtikz@transform@target@northwest{%
      tikz@scan@transform@one@point{#4}}%
      }
      }

      deftikzgridtransform{%
      pgfextract@processtikz@current@point{}%
      pgf@process{%
      pgfpointdiff{tikz@transform@source@southwest}%
      {tikz@transform@source@northeast}%
      }%
      pgf@xc=pgf@xpgf@yc=pgf@y%
      pgf@process{%
      pgfpointdiff{tikz@transform@source@southwest}{tikz@current@point}%
      }%
      pgfmathparse{pgf@x/pgf@xc}lettikz@tx=pgfmathresult%
      pgfmathparse{pgf@y/pgf@yc}lettikz@ty=pgfmathresult%
      %
      pgfpointlineattime{tikz@ty}{%
      pgfpointlineattime{tikz@tx}{tikz@transform@target@southwest}%
      {tikz@transform@target@southeast}}{%
      pgfpointlineattime{tikz@tx}{tikz@transform@target@northwest}%
      {tikz@transform@target@northeast}}%
      }

      % Initialize H matrix for perspective view
      pgfmathsetmacroH@tpp@aa{1}pgfmathsetmacroH@tpp@ab{0}pgfmathsetmacroH@tpp@ac{0}%pgfmathsetmacroH@tpp@ad{0}
      pgfmathsetmacroH@tpp@ba{0}pgfmathsetmacroH@tpp@bb{1}pgfmathsetmacroH@tpp@bc{0}%pgfmathsetmacroH@tpp@bd{0}
      pgfmathsetmacroH@tpp@ca{0}pgfmathsetmacroH@tpp@cb{0}pgfmathsetmacroH@tpp@cc{1}%pgfmathsetmacroH@tpp@cd{0}
      pgfmathsetmacroH@tpp@da{0}pgfmathsetmacroH@tpp@db{0}pgfmathsetmacroH@tpp@dc{0}%pgfmathsetmacroH@tpp@dd{1}

      %Initialize H matrix for main rotation
      pgfmathsetmacroH@rot@aa{1}pgfmathsetmacroH@rot@ab{0}pgfmathsetmacroH@rot@ac{0}%pgfmathsetmacroH@rot@ad{0}
      pgfmathsetmacroH@rot@ba{0}pgfmathsetmacroH@rot@bb{1}pgfmathsetmacroH@rot@bc{0}%pgfmathsetmacroH@rot@bd{0}
      pgfmathsetmacroH@rot@ca{0}pgfmathsetmacroH@rot@cb{0}pgfmathsetmacroH@rot@cc{1}%pgfmathsetmacroH@rot@cd{0}
      %pgfmathsetmacroH@rot@da{0}pgfmathsetmacroH@rot@db{0}pgfmathsetmacroH@rot@dc{0}pgfmathsetmacroH@rot@dd{1}

      pgfkeys{
      /three point perspective/.cd,
      p/.code args={(#1,#2,#3)}{
      pgfmathparse{int(round(#1))}
      ifnumpgfmathresult=0else
      pgfmathsetmacroH@tpp@ba{#2/#1}
      pgfmathsetmacroH@tpp@ca{#3/#1}
      pgfmathsetmacroH@tpp@da{ 1/#1}
      coordinate (vp-p) at (#1,#2,#3);
      fi
      },
      q/.code args={(#1,#2,#3)}{
      pgfmathparse{int(round(#2))}
      ifnumpgfmathresult=0else
      pgfmathsetmacroH@tpp@ab{#1/#2}
      pgfmathsetmacroH@tpp@cb{#3/#2}
      pgfmathsetmacroH@tpp@db{ 1/#2}
      coordinate (vp-q) at (#1,#2,#3);
      fi
      },
      r/.code args={(#1,#2,#3)}{
      pgfmathparse{int(round(#3))}
      ifnumpgfmathresult=0else
      pgfmathsetmacroH@tpp@ac{#1/#3}
      pgfmathsetmacroH@tpp@bc{#2/#3}
      pgfmathsetmacroH@tpp@dc{ 1/#3}
      coordinate (vp-r) at (#1,#2,#3);
      fi
      },
      coordinate/.code args={#1,#2,#3}{
      pgfmathsetmacrotpp@x{#1} %<- Max' fix
      pgfmathsetmacrotpp@y{#2}
      pgfmathsetmacrotpp@z{#3}
      },
      }

      tikzset{
      view/.code 2 args={
      pgfmathsetmacrorot@main@theta{#1}
      pgfmathsetmacrorot@main@phi{#2}
      % Row 1
      pgfmathsetmacroH@rot@aa{cos(rot@main@phi)}
      pgfmathsetmacroH@rot@ab{sin(rot@main@phi)}
      pgfmathsetmacroH@rot@ac{0}
      % Row 2
      pgfmathsetmacroH@rot@ba{-cos(rot@main@theta)*sin(rot@main@phi)}
      pgfmathsetmacroH@rot@bb{cos(rot@main@phi)*cos(rot@main@theta)}
      pgfmathsetmacroH@rot@bc{sin(rot@main@theta)}
      % Row 3
      pgfmathsetmacroH@m@ca{sin(rot@main@phi)*sin(rot@main@theta)}
      pgfmathsetmacroH@m@cb{-cos(rot@main@phi)*sin(rot@main@theta)}
      pgfmathsetmacroH@m@cc{cos(rot@main@theta)}
      % Set vector values
      pgfmathsetmacrovec@x@x{H@rot@aa}
      pgfmathsetmacrovec@y@x{H@rot@ab}
      pgfmathsetmacrovec@z@x{H@rot@ac}
      pgfmathsetmacrovec@x@y{H@rot@ba}
      pgfmathsetmacrovec@y@y{H@rot@bb}
      pgfmathsetmacrovec@z@y{H@rot@bc}
      % Set pgf vectors
      pgfsetxvec{pgfpoint{vec@x@x cm}{vec@x@y cm}}
      pgfsetyvec{pgfpoint{vec@y@x cm}{vec@y@y cm}}
      pgfsetzvec{pgfpoint{vec@z@x cm}{vec@z@y cm}}
      },
      }

      tikzset{
      perspective/.code={pgfkeys{/three point perspective/.cd,#1}},
      perspective/.default={p={(15,0,0)},q={(0,15,0)},r={(0,0,50)}},
      }

      tikzdeclarecoordinatesystem{three point perspective}{
      pgfkeys{/three point perspective/.cd,coordinate={#1}}
      pgfmathsetmacrotemp@p@w{H@tpp@da*tpp@x + H@tpp@db*tpp@y + H@tpp@dc*tpp@z + 1}
      pgfmathsetmacrotemp@p@x{(H@tpp@aa*tpp@x + H@tpp@ab*tpp@y + H@tpp@ac*tpp@z)/temp@p@w}
      pgfmathsetmacrotemp@p@y{(H@tpp@ba*tpp@x + H@tpp@bb*tpp@y + H@tpp@bc*tpp@z)/temp@p@w}
      pgfmathsetmacrotemp@p@z{(H@tpp@ca*tpp@x + H@tpp@cb*tpp@y + H@tpp@cc*tpp@z)/temp@p@w}
      pgfpointxyz{temp@p@x}{temp@p@y}{temp@p@z}
      }
      tikzaliascoordinatesystem{tpp}{three point perspective}

      makeatother

      begin{document}
      tdplotsetmaincoords{70}{0}
      foreach X [evaluate=X as vq using {X*X}]in {2,2.1,...,4,3.9,3.8,...,2.1}{
      begin{tikzpicture}[scale=pi,%tdplot_main_coords
      view={tdplotmaintheta}{tdplotmainphi},
      perspective={
      p = {(0,0,10)},
      q = {(0,vq,1.25)},
      }
      ]
      path[tdplot_screen_coords] (-2,-1) rectangle (2,2);
      foreach Y in {-1,1}
      {foreach X in {1,-1}
      {shade[top color=gray!50,bottom color=gray!60,middle color=gray!20,
      shading angle=90] (tpp cs:X*0.9,Y*0.9,1) -- (tpp cs:X*0.89,Y*0.9,0)
      to[bend left=X*12]
      (tpp cs:X*0.81,Y*0.9,0) -- (tpp cs:X*0.8,Y*0.8,1);}}
      node[cylinder,draw,minimum width=4mm,minimum height=5mm,aspect=0.5,inner
      sep=3pt,rotate=90,cylinder uses custom fill,cylinder end fill=gray!50!black,
      cylinder body fill=black,label={[font=sffamily]below left:2}] (c2) at
      (tpp cs:0,0,0.1){};
      draw[name path=line] (c2.top|-c2.before top) -- (tpp cs:0,0,1);
      draw[gray!50,fill=gray!50]
      (tpp cs:-1,-1,1) -- (tpp cs:1,-1,1) -- (tpp cs:1,1,1) -- (tpp cs:-1,1,1) -- cycle;
      draw[gray!50,fill=white,thick]
      (tpp cs:-1,-1,1) -- (tpp cs:1,-1,1)
      -- (tpp cs:1,-1,0.9) -- (tpp cs:-1,-1,0.9) -- cycle;

      draw[dashed,fill=gray!25,name path=circle] plot[variable=x,smooth,domain=0:360]
      (tpp cs:{0.8*cos(x)},{0.8*sin(x)},1);
      node[cylinder,draw,minimum width=4mm,minimum height=2mm,aspect=0.5,inner
      sep=3pt,rotate=85,cylinder uses custom fill,cylinder end fill=gray!50!black,
      cylinder body fill=black] (c1) at
      (tpp cs:0.4,0.1,1.2){};
      node[anchor=north,font=sffamily] at ([yshift=-1mm]c1){1};
      draw[dashed,name intersections={of=circle and line}] (intersection-1)
      -- (tpp cs:0,0,1);
      draw (tpp cs:0,0,1) -- (c1.west);
      end{tikzpicture}}
      end{document}


      enter image description here



      And if you replace the loop by



       foreach X [evaluate=X as vq using {X*X}]in {3.5}{


      say, you'll get.



      enter image description here



      Of course, you may find that another choice of parameters reproduces your screen shot more closely. Apart from the entries of q you can also play with the view angles.






      share|improve this answer




























        5












        5








        5







        All credits go to Max' answer. All I do is to truncate his general projection to a simpler case, which may help to understand better what's going on here. Max' picture shows very nicely what his code does: it transforms the objects in such a way that the edges that are parallel to the x axis meet in p, the ones parallel to the y axis in q and the ones parallel to the z axis in r. (Yes, that's just a sloppy definition of "vanishing points".) However, in order to reproduce something like your screenshot, we only need to play with q, which is what the following animation does.



        documentclass[tikz,border=3.14mm]{standalone}
        usepackage{tikz-3dplot}
        usetikzlibrary{shapes.geometric,intersections}
        usepgfmodule{nonlineartransformations}
        % Max magic
        makeatletter
        % the first part is not in use here
        deftikz@scan@transform@one@point#1{%
        tikz@scan@one@pointpgf@process#1%
        pgf@pos@transform{pgf@x}{pgf@y}}
        tikzset{%
        grid source opposite corners/.code args={#1and#2}{%
        pgfextract@processtikz@transform@source@southwest{%
        tikz@scan@transform@one@point{#1}}%
        pgfextract@processtikz@transform@source@northeast{%
        tikz@scan@transform@one@point{#2}}%
        },
        grid target corners/.code args={#1--#2--#3--#4}{%
        pgfextract@processtikz@transform@target@southwest{%
        tikz@scan@transform@one@point{#1}}%
        pgfextract@processtikz@transform@target@southeast{%
        tikz@scan@transform@one@point{#2}}%
        pgfextract@processtikz@transform@target@northeast{%
        tikz@scan@transform@one@point{#3}}%
        pgfextract@processtikz@transform@target@northwest{%
        tikz@scan@transform@one@point{#4}}%
        }
        }

        deftikzgridtransform{%
        pgfextract@processtikz@current@point{}%
        pgf@process{%
        pgfpointdiff{tikz@transform@source@southwest}%
        {tikz@transform@source@northeast}%
        }%
        pgf@xc=pgf@xpgf@yc=pgf@y%
        pgf@process{%
        pgfpointdiff{tikz@transform@source@southwest}{tikz@current@point}%
        }%
        pgfmathparse{pgf@x/pgf@xc}lettikz@tx=pgfmathresult%
        pgfmathparse{pgf@y/pgf@yc}lettikz@ty=pgfmathresult%
        %
        pgfpointlineattime{tikz@ty}{%
        pgfpointlineattime{tikz@tx}{tikz@transform@target@southwest}%
        {tikz@transform@target@southeast}}{%
        pgfpointlineattime{tikz@tx}{tikz@transform@target@northwest}%
        {tikz@transform@target@northeast}}%
        }

        % Initialize H matrix for perspective view
        pgfmathsetmacroH@tpp@aa{1}pgfmathsetmacroH@tpp@ab{0}pgfmathsetmacroH@tpp@ac{0}%pgfmathsetmacroH@tpp@ad{0}
        pgfmathsetmacroH@tpp@ba{0}pgfmathsetmacroH@tpp@bb{1}pgfmathsetmacroH@tpp@bc{0}%pgfmathsetmacroH@tpp@bd{0}
        pgfmathsetmacroH@tpp@ca{0}pgfmathsetmacroH@tpp@cb{0}pgfmathsetmacroH@tpp@cc{1}%pgfmathsetmacroH@tpp@cd{0}
        pgfmathsetmacroH@tpp@da{0}pgfmathsetmacroH@tpp@db{0}pgfmathsetmacroH@tpp@dc{0}%pgfmathsetmacroH@tpp@dd{1}

        %Initialize H matrix for main rotation
        pgfmathsetmacroH@rot@aa{1}pgfmathsetmacroH@rot@ab{0}pgfmathsetmacroH@rot@ac{0}%pgfmathsetmacroH@rot@ad{0}
        pgfmathsetmacroH@rot@ba{0}pgfmathsetmacroH@rot@bb{1}pgfmathsetmacroH@rot@bc{0}%pgfmathsetmacroH@rot@bd{0}
        pgfmathsetmacroH@rot@ca{0}pgfmathsetmacroH@rot@cb{0}pgfmathsetmacroH@rot@cc{1}%pgfmathsetmacroH@rot@cd{0}
        %pgfmathsetmacroH@rot@da{0}pgfmathsetmacroH@rot@db{0}pgfmathsetmacroH@rot@dc{0}pgfmathsetmacroH@rot@dd{1}

        pgfkeys{
        /three point perspective/.cd,
        p/.code args={(#1,#2,#3)}{
        pgfmathparse{int(round(#1))}
        ifnumpgfmathresult=0else
        pgfmathsetmacroH@tpp@ba{#2/#1}
        pgfmathsetmacroH@tpp@ca{#3/#1}
        pgfmathsetmacroH@tpp@da{ 1/#1}
        coordinate (vp-p) at (#1,#2,#3);
        fi
        },
        q/.code args={(#1,#2,#3)}{
        pgfmathparse{int(round(#2))}
        ifnumpgfmathresult=0else
        pgfmathsetmacroH@tpp@ab{#1/#2}
        pgfmathsetmacroH@tpp@cb{#3/#2}
        pgfmathsetmacroH@tpp@db{ 1/#2}
        coordinate (vp-q) at (#1,#2,#3);
        fi
        },
        r/.code args={(#1,#2,#3)}{
        pgfmathparse{int(round(#3))}
        ifnumpgfmathresult=0else
        pgfmathsetmacroH@tpp@ac{#1/#3}
        pgfmathsetmacroH@tpp@bc{#2/#3}
        pgfmathsetmacroH@tpp@dc{ 1/#3}
        coordinate (vp-r) at (#1,#2,#3);
        fi
        },
        coordinate/.code args={#1,#2,#3}{
        pgfmathsetmacrotpp@x{#1} %<- Max' fix
        pgfmathsetmacrotpp@y{#2}
        pgfmathsetmacrotpp@z{#3}
        },
        }

        tikzset{
        view/.code 2 args={
        pgfmathsetmacrorot@main@theta{#1}
        pgfmathsetmacrorot@main@phi{#2}
        % Row 1
        pgfmathsetmacroH@rot@aa{cos(rot@main@phi)}
        pgfmathsetmacroH@rot@ab{sin(rot@main@phi)}
        pgfmathsetmacroH@rot@ac{0}
        % Row 2
        pgfmathsetmacroH@rot@ba{-cos(rot@main@theta)*sin(rot@main@phi)}
        pgfmathsetmacroH@rot@bb{cos(rot@main@phi)*cos(rot@main@theta)}
        pgfmathsetmacroH@rot@bc{sin(rot@main@theta)}
        % Row 3
        pgfmathsetmacroH@m@ca{sin(rot@main@phi)*sin(rot@main@theta)}
        pgfmathsetmacroH@m@cb{-cos(rot@main@phi)*sin(rot@main@theta)}
        pgfmathsetmacroH@m@cc{cos(rot@main@theta)}
        % Set vector values
        pgfmathsetmacrovec@x@x{H@rot@aa}
        pgfmathsetmacrovec@y@x{H@rot@ab}
        pgfmathsetmacrovec@z@x{H@rot@ac}
        pgfmathsetmacrovec@x@y{H@rot@ba}
        pgfmathsetmacrovec@y@y{H@rot@bb}
        pgfmathsetmacrovec@z@y{H@rot@bc}
        % Set pgf vectors
        pgfsetxvec{pgfpoint{vec@x@x cm}{vec@x@y cm}}
        pgfsetyvec{pgfpoint{vec@y@x cm}{vec@y@y cm}}
        pgfsetzvec{pgfpoint{vec@z@x cm}{vec@z@y cm}}
        },
        }

        tikzset{
        perspective/.code={pgfkeys{/three point perspective/.cd,#1}},
        perspective/.default={p={(15,0,0)},q={(0,15,0)},r={(0,0,50)}},
        }

        tikzdeclarecoordinatesystem{three point perspective}{
        pgfkeys{/three point perspective/.cd,coordinate={#1}}
        pgfmathsetmacrotemp@p@w{H@tpp@da*tpp@x + H@tpp@db*tpp@y + H@tpp@dc*tpp@z + 1}
        pgfmathsetmacrotemp@p@x{(H@tpp@aa*tpp@x + H@tpp@ab*tpp@y + H@tpp@ac*tpp@z)/temp@p@w}
        pgfmathsetmacrotemp@p@y{(H@tpp@ba*tpp@x + H@tpp@bb*tpp@y + H@tpp@bc*tpp@z)/temp@p@w}
        pgfmathsetmacrotemp@p@z{(H@tpp@ca*tpp@x + H@tpp@cb*tpp@y + H@tpp@cc*tpp@z)/temp@p@w}
        pgfpointxyz{temp@p@x}{temp@p@y}{temp@p@z}
        }
        tikzaliascoordinatesystem{tpp}{three point perspective}

        makeatother

        begin{document}
        tdplotsetmaincoords{70}{0}
        foreach X [evaluate=X as vq using {X*X}]in {2,2.1,...,4,3.9,3.8,...,2.1}{
        begin{tikzpicture}[scale=pi,%tdplot_main_coords
        view={tdplotmaintheta}{tdplotmainphi},
        perspective={
        p = {(0,0,10)},
        q = {(0,vq,1.25)},
        }
        ]
        path[tdplot_screen_coords] (-2,-1) rectangle (2,2);
        foreach Y in {-1,1}
        {foreach X in {1,-1}
        {shade[top color=gray!50,bottom color=gray!60,middle color=gray!20,
        shading angle=90] (tpp cs:X*0.9,Y*0.9,1) -- (tpp cs:X*0.89,Y*0.9,0)
        to[bend left=X*12]
        (tpp cs:X*0.81,Y*0.9,0) -- (tpp cs:X*0.8,Y*0.8,1);}}
        node[cylinder,draw,minimum width=4mm,minimum height=5mm,aspect=0.5,inner
        sep=3pt,rotate=90,cylinder uses custom fill,cylinder end fill=gray!50!black,
        cylinder body fill=black,label={[font=sffamily]below left:2}] (c2) at
        (tpp cs:0,0,0.1){};
        draw[name path=line] (c2.top|-c2.before top) -- (tpp cs:0,0,1);
        draw[gray!50,fill=gray!50]
        (tpp cs:-1,-1,1) -- (tpp cs:1,-1,1) -- (tpp cs:1,1,1) -- (tpp cs:-1,1,1) -- cycle;
        draw[gray!50,fill=white,thick]
        (tpp cs:-1,-1,1) -- (tpp cs:1,-1,1)
        -- (tpp cs:1,-1,0.9) -- (tpp cs:-1,-1,0.9) -- cycle;

        draw[dashed,fill=gray!25,name path=circle] plot[variable=x,smooth,domain=0:360]
        (tpp cs:{0.8*cos(x)},{0.8*sin(x)},1);
        node[cylinder,draw,minimum width=4mm,minimum height=2mm,aspect=0.5,inner
        sep=3pt,rotate=85,cylinder uses custom fill,cylinder end fill=gray!50!black,
        cylinder body fill=black] (c1) at
        (tpp cs:0.4,0.1,1.2){};
        node[anchor=north,font=sffamily] at ([yshift=-1mm]c1){1};
        draw[dashed,name intersections={of=circle and line}] (intersection-1)
        -- (tpp cs:0,0,1);
        draw (tpp cs:0,0,1) -- (c1.west);
        end{tikzpicture}}
        end{document}


        enter image description here



        And if you replace the loop by



         foreach X [evaluate=X as vq using {X*X}]in {3.5}{


        say, you'll get.



        enter image description here



        Of course, you may find that another choice of parameters reproduces your screen shot more closely. Apart from the entries of q you can also play with the view angles.






        share|improve this answer















        All credits go to Max' answer. All I do is to truncate his general projection to a simpler case, which may help to understand better what's going on here. Max' picture shows very nicely what his code does: it transforms the objects in such a way that the edges that are parallel to the x axis meet in p, the ones parallel to the y axis in q and the ones parallel to the z axis in r. (Yes, that's just a sloppy definition of "vanishing points".) However, in order to reproduce something like your screenshot, we only need to play with q, which is what the following animation does.



        documentclass[tikz,border=3.14mm]{standalone}
        usepackage{tikz-3dplot}
        usetikzlibrary{shapes.geometric,intersections}
        usepgfmodule{nonlineartransformations}
        % Max magic
        makeatletter
        % the first part is not in use here
        deftikz@scan@transform@one@point#1{%
        tikz@scan@one@pointpgf@process#1%
        pgf@pos@transform{pgf@x}{pgf@y}}
        tikzset{%
        grid source opposite corners/.code args={#1and#2}{%
        pgfextract@processtikz@transform@source@southwest{%
        tikz@scan@transform@one@point{#1}}%
        pgfextract@processtikz@transform@source@northeast{%
        tikz@scan@transform@one@point{#2}}%
        },
        grid target corners/.code args={#1--#2--#3--#4}{%
        pgfextract@processtikz@transform@target@southwest{%
        tikz@scan@transform@one@point{#1}}%
        pgfextract@processtikz@transform@target@southeast{%
        tikz@scan@transform@one@point{#2}}%
        pgfextract@processtikz@transform@target@northeast{%
        tikz@scan@transform@one@point{#3}}%
        pgfextract@processtikz@transform@target@northwest{%
        tikz@scan@transform@one@point{#4}}%
        }
        }

        deftikzgridtransform{%
        pgfextract@processtikz@current@point{}%
        pgf@process{%
        pgfpointdiff{tikz@transform@source@southwest}%
        {tikz@transform@source@northeast}%
        }%
        pgf@xc=pgf@xpgf@yc=pgf@y%
        pgf@process{%
        pgfpointdiff{tikz@transform@source@southwest}{tikz@current@point}%
        }%
        pgfmathparse{pgf@x/pgf@xc}lettikz@tx=pgfmathresult%
        pgfmathparse{pgf@y/pgf@yc}lettikz@ty=pgfmathresult%
        %
        pgfpointlineattime{tikz@ty}{%
        pgfpointlineattime{tikz@tx}{tikz@transform@target@southwest}%
        {tikz@transform@target@southeast}}{%
        pgfpointlineattime{tikz@tx}{tikz@transform@target@northwest}%
        {tikz@transform@target@northeast}}%
        }

        % Initialize H matrix for perspective view
        pgfmathsetmacroH@tpp@aa{1}pgfmathsetmacroH@tpp@ab{0}pgfmathsetmacroH@tpp@ac{0}%pgfmathsetmacroH@tpp@ad{0}
        pgfmathsetmacroH@tpp@ba{0}pgfmathsetmacroH@tpp@bb{1}pgfmathsetmacroH@tpp@bc{0}%pgfmathsetmacroH@tpp@bd{0}
        pgfmathsetmacroH@tpp@ca{0}pgfmathsetmacroH@tpp@cb{0}pgfmathsetmacroH@tpp@cc{1}%pgfmathsetmacroH@tpp@cd{0}
        pgfmathsetmacroH@tpp@da{0}pgfmathsetmacroH@tpp@db{0}pgfmathsetmacroH@tpp@dc{0}%pgfmathsetmacroH@tpp@dd{1}

        %Initialize H matrix for main rotation
        pgfmathsetmacroH@rot@aa{1}pgfmathsetmacroH@rot@ab{0}pgfmathsetmacroH@rot@ac{0}%pgfmathsetmacroH@rot@ad{0}
        pgfmathsetmacroH@rot@ba{0}pgfmathsetmacroH@rot@bb{1}pgfmathsetmacroH@rot@bc{0}%pgfmathsetmacroH@rot@bd{0}
        pgfmathsetmacroH@rot@ca{0}pgfmathsetmacroH@rot@cb{0}pgfmathsetmacroH@rot@cc{1}%pgfmathsetmacroH@rot@cd{0}
        %pgfmathsetmacroH@rot@da{0}pgfmathsetmacroH@rot@db{0}pgfmathsetmacroH@rot@dc{0}pgfmathsetmacroH@rot@dd{1}

        pgfkeys{
        /three point perspective/.cd,
        p/.code args={(#1,#2,#3)}{
        pgfmathparse{int(round(#1))}
        ifnumpgfmathresult=0else
        pgfmathsetmacroH@tpp@ba{#2/#1}
        pgfmathsetmacroH@tpp@ca{#3/#1}
        pgfmathsetmacroH@tpp@da{ 1/#1}
        coordinate (vp-p) at (#1,#2,#3);
        fi
        },
        q/.code args={(#1,#2,#3)}{
        pgfmathparse{int(round(#2))}
        ifnumpgfmathresult=0else
        pgfmathsetmacroH@tpp@ab{#1/#2}
        pgfmathsetmacroH@tpp@cb{#3/#2}
        pgfmathsetmacroH@tpp@db{ 1/#2}
        coordinate (vp-q) at (#1,#2,#3);
        fi
        },
        r/.code args={(#1,#2,#3)}{
        pgfmathparse{int(round(#3))}
        ifnumpgfmathresult=0else
        pgfmathsetmacroH@tpp@ac{#1/#3}
        pgfmathsetmacroH@tpp@bc{#2/#3}
        pgfmathsetmacroH@tpp@dc{ 1/#3}
        coordinate (vp-r) at (#1,#2,#3);
        fi
        },
        coordinate/.code args={#1,#2,#3}{
        pgfmathsetmacrotpp@x{#1} %<- Max' fix
        pgfmathsetmacrotpp@y{#2}
        pgfmathsetmacrotpp@z{#3}
        },
        }

        tikzset{
        view/.code 2 args={
        pgfmathsetmacrorot@main@theta{#1}
        pgfmathsetmacrorot@main@phi{#2}
        % Row 1
        pgfmathsetmacroH@rot@aa{cos(rot@main@phi)}
        pgfmathsetmacroH@rot@ab{sin(rot@main@phi)}
        pgfmathsetmacroH@rot@ac{0}
        % Row 2
        pgfmathsetmacroH@rot@ba{-cos(rot@main@theta)*sin(rot@main@phi)}
        pgfmathsetmacroH@rot@bb{cos(rot@main@phi)*cos(rot@main@theta)}
        pgfmathsetmacroH@rot@bc{sin(rot@main@theta)}
        % Row 3
        pgfmathsetmacroH@m@ca{sin(rot@main@phi)*sin(rot@main@theta)}
        pgfmathsetmacroH@m@cb{-cos(rot@main@phi)*sin(rot@main@theta)}
        pgfmathsetmacroH@m@cc{cos(rot@main@theta)}
        % Set vector values
        pgfmathsetmacrovec@x@x{H@rot@aa}
        pgfmathsetmacrovec@y@x{H@rot@ab}
        pgfmathsetmacrovec@z@x{H@rot@ac}
        pgfmathsetmacrovec@x@y{H@rot@ba}
        pgfmathsetmacrovec@y@y{H@rot@bb}
        pgfmathsetmacrovec@z@y{H@rot@bc}
        % Set pgf vectors
        pgfsetxvec{pgfpoint{vec@x@x cm}{vec@x@y cm}}
        pgfsetyvec{pgfpoint{vec@y@x cm}{vec@y@y cm}}
        pgfsetzvec{pgfpoint{vec@z@x cm}{vec@z@y cm}}
        },
        }

        tikzset{
        perspective/.code={pgfkeys{/three point perspective/.cd,#1}},
        perspective/.default={p={(15,0,0)},q={(0,15,0)},r={(0,0,50)}},
        }

        tikzdeclarecoordinatesystem{three point perspective}{
        pgfkeys{/three point perspective/.cd,coordinate={#1}}
        pgfmathsetmacrotemp@p@w{H@tpp@da*tpp@x + H@tpp@db*tpp@y + H@tpp@dc*tpp@z + 1}
        pgfmathsetmacrotemp@p@x{(H@tpp@aa*tpp@x + H@tpp@ab*tpp@y + H@tpp@ac*tpp@z)/temp@p@w}
        pgfmathsetmacrotemp@p@y{(H@tpp@ba*tpp@x + H@tpp@bb*tpp@y + H@tpp@bc*tpp@z)/temp@p@w}
        pgfmathsetmacrotemp@p@z{(H@tpp@ca*tpp@x + H@tpp@cb*tpp@y + H@tpp@cc*tpp@z)/temp@p@w}
        pgfpointxyz{temp@p@x}{temp@p@y}{temp@p@z}
        }
        tikzaliascoordinatesystem{tpp}{three point perspective}

        makeatother

        begin{document}
        tdplotsetmaincoords{70}{0}
        foreach X [evaluate=X as vq using {X*X}]in {2,2.1,...,4,3.9,3.8,...,2.1}{
        begin{tikzpicture}[scale=pi,%tdplot_main_coords
        view={tdplotmaintheta}{tdplotmainphi},
        perspective={
        p = {(0,0,10)},
        q = {(0,vq,1.25)},
        }
        ]
        path[tdplot_screen_coords] (-2,-1) rectangle (2,2);
        foreach Y in {-1,1}
        {foreach X in {1,-1}
        {shade[top color=gray!50,bottom color=gray!60,middle color=gray!20,
        shading angle=90] (tpp cs:X*0.9,Y*0.9,1) -- (tpp cs:X*0.89,Y*0.9,0)
        to[bend left=X*12]
        (tpp cs:X*0.81,Y*0.9,0) -- (tpp cs:X*0.8,Y*0.8,1);}}
        node[cylinder,draw,minimum width=4mm,minimum height=5mm,aspect=0.5,inner
        sep=3pt,rotate=90,cylinder uses custom fill,cylinder end fill=gray!50!black,
        cylinder body fill=black,label={[font=sffamily]below left:2}] (c2) at
        (tpp cs:0,0,0.1){};
        draw[name path=line] (c2.top|-c2.before top) -- (tpp cs:0,0,1);
        draw[gray!50,fill=gray!50]
        (tpp cs:-1,-1,1) -- (tpp cs:1,-1,1) -- (tpp cs:1,1,1) -- (tpp cs:-1,1,1) -- cycle;
        draw[gray!50,fill=white,thick]
        (tpp cs:-1,-1,1) -- (tpp cs:1,-1,1)
        -- (tpp cs:1,-1,0.9) -- (tpp cs:-1,-1,0.9) -- cycle;

        draw[dashed,fill=gray!25,name path=circle] plot[variable=x,smooth,domain=0:360]
        (tpp cs:{0.8*cos(x)},{0.8*sin(x)},1);
        node[cylinder,draw,minimum width=4mm,minimum height=2mm,aspect=0.5,inner
        sep=3pt,rotate=85,cylinder uses custom fill,cylinder end fill=gray!50!black,
        cylinder body fill=black] (c1) at
        (tpp cs:0.4,0.1,1.2){};
        node[anchor=north,font=sffamily] at ([yshift=-1mm]c1){1};
        draw[dashed,name intersections={of=circle and line}] (intersection-1)
        -- (tpp cs:0,0,1);
        draw (tpp cs:0,0,1) -- (c1.west);
        end{tikzpicture}}
        end{document}


        enter image description here



        And if you replace the loop by



         foreach X [evaluate=X as vq using {X*X}]in {3.5}{


        say, you'll get.



        enter image description here



        Of course, you may find that another choice of parameters reproduces your screen shot more closely. Apart from the entries of q you can also play with the view angles.







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited 2 hours ago

























        answered 4 hours ago









        marmotmarmot

        91.9k4107200




        91.9k4107200






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f470460%2fhow-can-i-give-this-perspective-with-tikz%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            404 Error Contact Form 7 ajax form submitting

            How to know if a Active Directory user can login interactively

            Refactoring coordinates for Minecraft Pi buildings written in Python