Differentiation under the integral sign - what transformations to use?












5












$begingroup$


Need some help with this integral



$$I (alpha) = int_1^infty {arctan(alpha x) over x^2sqrt{x^2-1}} dx$$



Taking the first derivative with respect to $alpha$



$$I' (alpha) = int_1^infty { dxover (1+alpha^2 x^2) xsqrt{x^2-1} }$$



What transformations to use in order to solve $I'(alpha)$?










share|cite|improve this question











$endgroup$

















    5












    $begingroup$


    Need some help with this integral



    $$I (alpha) = int_1^infty {arctan(alpha x) over x^2sqrt{x^2-1}} dx$$



    Taking the first derivative with respect to $alpha$



    $$I' (alpha) = int_1^infty { dxover (1+alpha^2 x^2) xsqrt{x^2-1} }$$



    What transformations to use in order to solve $I'(alpha)$?










    share|cite|improve this question











    $endgroup$















      5












      5








      5





      $begingroup$


      Need some help with this integral



      $$I (alpha) = int_1^infty {arctan(alpha x) over x^2sqrt{x^2-1}} dx$$



      Taking the first derivative with respect to $alpha$



      $$I' (alpha) = int_1^infty { dxover (1+alpha^2 x^2) xsqrt{x^2-1} }$$



      What transformations to use in order to solve $I'(alpha)$?










      share|cite|improve this question











      $endgroup$




      Need some help with this integral



      $$I (alpha) = int_1^infty {arctan(alpha x) over x^2sqrt{x^2-1}} dx$$



      Taking the first derivative with respect to $alpha$



      $$I' (alpha) = int_1^infty { dxover (1+alpha^2 x^2) xsqrt{x^2-1} }$$



      What transformations to use in order to solve $I'(alpha)$?







      calculus integration






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 4 hours ago









      El Pasta

      46615




      46615










      asked 4 hours ago









      KatKat

      264




      264






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Substitute
          $$u=sqrt{x^2-1}implies du=frac{x}{sqrt{x^2-1}}dximplies dx=frac{sqrt{x^2-1}}{x}du$$
          Then
          $$int { dxover (1+alpha^2 x^2) xsqrt{x^2-1} }=int { duover x^2(1+alpha^2 x^2)}=int { duover (u^2+1)(a^2u^2+a^2+1) }$$
          Perform partial fraction decomposition
          $$int { duover (u^2+1)(a^2u^2+a^2+1) }=intfrac{du}{u^2+1}-a^2intfrac{du}{a^2u^2+a^2+1}$$
          Sure you know that
          $$intfrac{du}{u^2+1}=arctan(u)+C$$
          To solve for
          $$intfrac{du}{a^2u^2+a^2+1}$$
          Use substitution
          $$v=frac{au}{sqrt{a^2+1}}implies du=frac{a^2+1}{a}$$
          $$intfrac{du}{a^2u^2+a^2+1}=intfrac{sqrt{a^2+1}dv}{a((a^2+1)v^2+a^2+1)}=frac{1}{asqrt{a^2+1}}intfrac{dv}{v^2+1}=frac{arctan(v)}{asqrt{a^2+1}}+C$$
          Now plug in back $x$, you would get



          $$int_{1}^{infty} { dxover (1+alpha^2 x^2) xsqrt{x^2-1} }=left[arctanleft(sqrt{x^2-1}right)-frac{aarctanleft(frac{asqrt{x^2-1}}{a^2+1}right)}{sqrt{a^2+1}}right]_{1}^{infty}$$
          I think you can handle the rest of the calculation.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081395%2fdifferentiation-under-the-integral-sign-what-transformations-to-use%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Substitute
            $$u=sqrt{x^2-1}implies du=frac{x}{sqrt{x^2-1}}dximplies dx=frac{sqrt{x^2-1}}{x}du$$
            Then
            $$int { dxover (1+alpha^2 x^2) xsqrt{x^2-1} }=int { duover x^2(1+alpha^2 x^2)}=int { duover (u^2+1)(a^2u^2+a^2+1) }$$
            Perform partial fraction decomposition
            $$int { duover (u^2+1)(a^2u^2+a^2+1) }=intfrac{du}{u^2+1}-a^2intfrac{du}{a^2u^2+a^2+1}$$
            Sure you know that
            $$intfrac{du}{u^2+1}=arctan(u)+C$$
            To solve for
            $$intfrac{du}{a^2u^2+a^2+1}$$
            Use substitution
            $$v=frac{au}{sqrt{a^2+1}}implies du=frac{a^2+1}{a}$$
            $$intfrac{du}{a^2u^2+a^2+1}=intfrac{sqrt{a^2+1}dv}{a((a^2+1)v^2+a^2+1)}=frac{1}{asqrt{a^2+1}}intfrac{dv}{v^2+1}=frac{arctan(v)}{asqrt{a^2+1}}+C$$
            Now plug in back $x$, you would get



            $$int_{1}^{infty} { dxover (1+alpha^2 x^2) xsqrt{x^2-1} }=left[arctanleft(sqrt{x^2-1}right)-frac{aarctanleft(frac{asqrt{x^2-1}}{a^2+1}right)}{sqrt{a^2+1}}right]_{1}^{infty}$$
            I think you can handle the rest of the calculation.






            share|cite|improve this answer











            $endgroup$


















              3












              $begingroup$

              Substitute
              $$u=sqrt{x^2-1}implies du=frac{x}{sqrt{x^2-1}}dximplies dx=frac{sqrt{x^2-1}}{x}du$$
              Then
              $$int { dxover (1+alpha^2 x^2) xsqrt{x^2-1} }=int { duover x^2(1+alpha^2 x^2)}=int { duover (u^2+1)(a^2u^2+a^2+1) }$$
              Perform partial fraction decomposition
              $$int { duover (u^2+1)(a^2u^2+a^2+1) }=intfrac{du}{u^2+1}-a^2intfrac{du}{a^2u^2+a^2+1}$$
              Sure you know that
              $$intfrac{du}{u^2+1}=arctan(u)+C$$
              To solve for
              $$intfrac{du}{a^2u^2+a^2+1}$$
              Use substitution
              $$v=frac{au}{sqrt{a^2+1}}implies du=frac{a^2+1}{a}$$
              $$intfrac{du}{a^2u^2+a^2+1}=intfrac{sqrt{a^2+1}dv}{a((a^2+1)v^2+a^2+1)}=frac{1}{asqrt{a^2+1}}intfrac{dv}{v^2+1}=frac{arctan(v)}{asqrt{a^2+1}}+C$$
              Now plug in back $x$, you would get



              $$int_{1}^{infty} { dxover (1+alpha^2 x^2) xsqrt{x^2-1} }=left[arctanleft(sqrt{x^2-1}right)-frac{aarctanleft(frac{asqrt{x^2-1}}{a^2+1}right)}{sqrt{a^2+1}}right]_{1}^{infty}$$
              I think you can handle the rest of the calculation.






              share|cite|improve this answer











              $endgroup$
















                3












                3








                3





                $begingroup$

                Substitute
                $$u=sqrt{x^2-1}implies du=frac{x}{sqrt{x^2-1}}dximplies dx=frac{sqrt{x^2-1}}{x}du$$
                Then
                $$int { dxover (1+alpha^2 x^2) xsqrt{x^2-1} }=int { duover x^2(1+alpha^2 x^2)}=int { duover (u^2+1)(a^2u^2+a^2+1) }$$
                Perform partial fraction decomposition
                $$int { duover (u^2+1)(a^2u^2+a^2+1) }=intfrac{du}{u^2+1}-a^2intfrac{du}{a^2u^2+a^2+1}$$
                Sure you know that
                $$intfrac{du}{u^2+1}=arctan(u)+C$$
                To solve for
                $$intfrac{du}{a^2u^2+a^2+1}$$
                Use substitution
                $$v=frac{au}{sqrt{a^2+1}}implies du=frac{a^2+1}{a}$$
                $$intfrac{du}{a^2u^2+a^2+1}=intfrac{sqrt{a^2+1}dv}{a((a^2+1)v^2+a^2+1)}=frac{1}{asqrt{a^2+1}}intfrac{dv}{v^2+1}=frac{arctan(v)}{asqrt{a^2+1}}+C$$
                Now plug in back $x$, you would get



                $$int_{1}^{infty} { dxover (1+alpha^2 x^2) xsqrt{x^2-1} }=left[arctanleft(sqrt{x^2-1}right)-frac{aarctanleft(frac{asqrt{x^2-1}}{a^2+1}right)}{sqrt{a^2+1}}right]_{1}^{infty}$$
                I think you can handle the rest of the calculation.






                share|cite|improve this answer











                $endgroup$



                Substitute
                $$u=sqrt{x^2-1}implies du=frac{x}{sqrt{x^2-1}}dximplies dx=frac{sqrt{x^2-1}}{x}du$$
                Then
                $$int { dxover (1+alpha^2 x^2) xsqrt{x^2-1} }=int { duover x^2(1+alpha^2 x^2)}=int { duover (u^2+1)(a^2u^2+a^2+1) }$$
                Perform partial fraction decomposition
                $$int { duover (u^2+1)(a^2u^2+a^2+1) }=intfrac{du}{u^2+1}-a^2intfrac{du}{a^2u^2+a^2+1}$$
                Sure you know that
                $$intfrac{du}{u^2+1}=arctan(u)+C$$
                To solve for
                $$intfrac{du}{a^2u^2+a^2+1}$$
                Use substitution
                $$v=frac{au}{sqrt{a^2+1}}implies du=frac{a^2+1}{a}$$
                $$intfrac{du}{a^2u^2+a^2+1}=intfrac{sqrt{a^2+1}dv}{a((a^2+1)v^2+a^2+1)}=frac{1}{asqrt{a^2+1}}intfrac{dv}{v^2+1}=frac{arctan(v)}{asqrt{a^2+1}}+C$$
                Now plug in back $x$, you would get



                $$int_{1}^{infty} { dxover (1+alpha^2 x^2) xsqrt{x^2-1} }=left[arctanleft(sqrt{x^2-1}right)-frac{aarctanleft(frac{asqrt{x^2-1}}{a^2+1}right)}{sqrt{a^2+1}}right]_{1}^{infty}$$
                I think you can handle the rest of the calculation.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 3 hours ago

























                answered 3 hours ago









                LarryLarry

                2,1862828




                2,1862828






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081395%2fdifferentiation-under-the-integral-sign-what-transformations-to-use%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    404 Error Contact Form 7 ajax form submitting

                    How to know if a Active Directory user can login interactively

                    Refactoring coordinates for Minecraft Pi buildings written in Python