Writing monadic Haskell to evaluate arithmetic expression












0












$begingroup$


I have been studying Haskell by myself for about a little over a year. And I have been stuck at monad/monad transformers for quite a while until recently some examples I read online enlightened me. So I decided to try on the following problem with writing monadic Haskell code.



The problem is to evaluate a string that contains only 0-9, +, - and *, which represents addition, subtraction and multiplication separately. The string itself should represent a valid math expression and starts with a number always.



"3+5" -> 8
"3+25*4" -> 103
"1-2*2*2+7" -> 7


The goal of the exercise is not to write a perfect parsing engine to evaluate any math expression but to try to learn to use monad as a tool to write program that could be relatively straight forward in an imperative language such as C++, for example:



#include <stack>
#include <iostream>
#include <string>
#include <stdexcept>

using namespace std;

int calc(char c, int n1, int n2)
{
// cout << c << "-->" << n1 << " and " << n2 << endl;
if (c == '+') return n1+n2;
else if (c == '-') return n1-n2;
else if (c == '*') return n1*n2;
else throw runtime_error("bad operator");
}

void update(stack<int>& numbers, stack<char>& operators)
{
if (operators.size() + 1 != numbers.size()) throw runtime_error("bad");
char op = operators.top();
operators.pop();

int n2 = numbers.top();
numbers.pop();

int n1 = numbers.top();
numbers.pop();

numbers.push(calc(op, n1, n2));
}

int processMath(const string& input) {
int num = 0;

stack<int> numbers;
stack<char> operators;

for (char c : input) {
if (c == '+' || c == '-' || c == '*') {
numbers.push(num);
num = 0; // reset number
if (c == '*' && !operators.empty() && operators.top() == '*') {
update(numbers, operators);
} else if (c == '+' || c == '-') { // c is + or -
while (!operators.empty()) update(numbers, operators);
}
operators.push(c);
} else {
num = num*10+(c-'0');
// cout << "num=" << num << endl;
}
}
numbers.push(num);
while (!operators.empty()) update(numbers, operators);
return numbers.top();
}

// To execute C++, please define "int main()"
int main() {

string exp1 = "13+15";
string exp2 = "3+25*4";
string exp3 = "1-2*2*2+7";

cout << exp1 << endl << processMath(exp1) << endl << endl;
cout << exp2 << endl << processMath(exp2) << endl << endl;
cout << exp3 << endl << processMath(exp3) << endl << endl;

return 0;
}


The following part is the haskell program I came up with, without using anything specific for parsing or math evaluation.



import Control.Monad.State
import Data.Char

data MathStacks = MathStacks { numbers :: [Int]
, operators :: [Char]
, current :: Int }
deriving Show

data EvalErr = ParseErr { position :: Int, reason :: String }
| StackErr String
| OpErr String
deriving Show

collapseOn :: MathStacks -> [Char] -> Either EvalErr MathStacks
collapseOn ms@(MathStacks ns ops _) permittedOps
| null ops = return ms
| length ns < 2 = Left $ StackErr ("numbers length < 2:" ++ show ns)
| not $ op `elem` "+-*" = Left $ OpErr ("invalid op=" ++ [op])
| not $ op `elem` permittedOps = return ms
| otherwise = do
n <- calc op n1 n2
return $ ms { numbers=(n:nrest), operators=oprest }
where (n2:n1:nrest) = ns
(op:oprest) = ops

calc :: Char -> Int -> Int -> Either EvalErr Int
calc c n1 n2
| c == '+' = return $ n1 + n2
| c == '-' = return $ n1 - n2
| c == '*' = return $ n1 * n2
| otherwise = Left $ OpErr ("invalid op=" ++ [c])

exec :: MathStacks -> Either EvalErr MathStacks
exec ms@(MathStacks ns ops curr)
| nlen /= olen + 1 = Left $ StackErr ("inconsistent stacks")
| olen == 0 = Right ms
| otherwise = do
let (n2:n1:nrest) = ns
(op:oprest) = ops
n <- calc op n1 n2
return $ MathStacks (n:nrest) oprest curr
where nlen = length ns
olen = length ops

exec' :: MathStacks -> Either EvalErr MathStacks
exec' ms@(MathStacks ns ops _)
| null ops = return ms
| otherwise = (exec ms) >>= exec'

eval :: MathStacks -> Either EvalErr Int
eval (MathStacks ns ops curr)
| nlen /= 1 || olen /= 0 = Left $ StackErr ("inconsistent stacks")
| otherwise = Right $ head ns
where nlen = length ns
olen = length ops

horner :: Int -> Int -> Int
horner digit num = num * 10 + digit

updateCurr :: Int -> MathStacks -> MathStacks
updateCurr digit ms@(MathStacks _ _ curr) = ms { current=horner digit curr }

updateOps :: Char -> MathStacks -> Either EvalErr MathStacks
updateOps op ms@(MathStacks _ ops _)
| op `elem` ['+', '-', '*'] = return $ ms { operators=(op:ops) }
| otherwise = Left $ OpErr ("invalid op=" ++ [op])

updateNum :: MathStacks -> MathStacks
updateNum ms@(MathStacks ns _ curr) = ms { numbers=(curr:ns), current=0 }

parse :: (Char, Int) -> MathStacks -> Either EvalErr MathStacks
parse (c, idx) ms@(MathStacks ns ops curr)
| c `elem` ['+', '-', '*'] = do
-- current number run is done
let ms0 = updateNum ms
-- if there is existing multiplication on top. collapse it
ms1 <- collapseOn ms0 "*"
ms2 <- if c == '+' || c == '-'
-- if there is existing addition or subtraction, do it
then collapseOn ms1 "+-"
else return ms1
updateOps c ms2
| isDigit c = Right $ updateCurr (digitToInt c) ms
| otherwise = Left $
ParseErr idx ("err char at pos=" ++ show idx ++ " char:" ++ [c])
where nlen = length ns
olen = length ops

updateOnceT :: StateT MathStacks (Either EvalErr) ()
updateOnceT = do -- in side of StateT MathStacks (Either EvalErr) monad
ms <- get
ms' <- lift $ exec ms
put ms'

evalCharT :: (Char, Int) -> StateT MathStacks (Either EvalErr) ()
evalCharT (c, idx) = do
ms <- get -- ms :: MathStacks
-- promotes from Either EvalErr MathStacks type to StateT monad
ms' <- lift $ parse (c, idx) ms
put ms'


evalStringT :: String -> StateT MathStacks (Either EvalErr) ()
evalStringT s = mapM_ evalCharT $ zip s [1..]

evalStringE :: String -> Either EvalErr MathStacks
evalStringE s = foldM (flip parse) emptyStack $ zip s [1..]

calcStringE :: String -> Either EvalErr MathStacks
calcStringE s = do
(_, ms) <- (runStateT $ evalStringT s) emptyStack
return ms


top :: MathStacks -> Either EvalErr Int
top ms = do
let ns = numbers ms
if null ns
then Left $ StackErr "no value left"
else return $ head ns

calcString :: String -> Either EvalErr Int
calcString s = do
ms <- evalStringE s -- or use ms <- calcStringE s
ms' <- exec' $ updateNum ms
top ms'

emptyStack = MathStacks 0

main :: IO ()
main = do
print $ calcString "13+15"
print $ calcString "3+25*4"
print $ calcString "1-2*2*2+7"


The solution is a much longer program than the C++ counterpart, which is not the impression I got with Haskell program. The part that I used StateT monad transformer is probably not necessary (function evalStringT and function calcStringE), however without these functions I don't think my solution will get much shorter. I am not even sure my solution is Haskellish enough so please point out anything that I can improve on my code. Thank you in advance.









share









$endgroup$

















    0












    $begingroup$


    I have been studying Haskell by myself for about a little over a year. And I have been stuck at monad/monad transformers for quite a while until recently some examples I read online enlightened me. So I decided to try on the following problem with writing monadic Haskell code.



    The problem is to evaluate a string that contains only 0-9, +, - and *, which represents addition, subtraction and multiplication separately. The string itself should represent a valid math expression and starts with a number always.



    "3+5" -> 8
    "3+25*4" -> 103
    "1-2*2*2+7" -> 7


    The goal of the exercise is not to write a perfect parsing engine to evaluate any math expression but to try to learn to use monad as a tool to write program that could be relatively straight forward in an imperative language such as C++, for example:



    #include <stack>
    #include <iostream>
    #include <string>
    #include <stdexcept>

    using namespace std;

    int calc(char c, int n1, int n2)
    {
    // cout << c << "-->" << n1 << " and " << n2 << endl;
    if (c == '+') return n1+n2;
    else if (c == '-') return n1-n2;
    else if (c == '*') return n1*n2;
    else throw runtime_error("bad operator");
    }

    void update(stack<int>& numbers, stack<char>& operators)
    {
    if (operators.size() + 1 != numbers.size()) throw runtime_error("bad");
    char op = operators.top();
    operators.pop();

    int n2 = numbers.top();
    numbers.pop();

    int n1 = numbers.top();
    numbers.pop();

    numbers.push(calc(op, n1, n2));
    }

    int processMath(const string& input) {
    int num = 0;

    stack<int> numbers;
    stack<char> operators;

    for (char c : input) {
    if (c == '+' || c == '-' || c == '*') {
    numbers.push(num);
    num = 0; // reset number
    if (c == '*' && !operators.empty() && operators.top() == '*') {
    update(numbers, operators);
    } else if (c == '+' || c == '-') { // c is + or -
    while (!operators.empty()) update(numbers, operators);
    }
    operators.push(c);
    } else {
    num = num*10+(c-'0');
    // cout << "num=" << num << endl;
    }
    }
    numbers.push(num);
    while (!operators.empty()) update(numbers, operators);
    return numbers.top();
    }

    // To execute C++, please define "int main()"
    int main() {

    string exp1 = "13+15";
    string exp2 = "3+25*4";
    string exp3 = "1-2*2*2+7";

    cout << exp1 << endl << processMath(exp1) << endl << endl;
    cout << exp2 << endl << processMath(exp2) << endl << endl;
    cout << exp3 << endl << processMath(exp3) << endl << endl;

    return 0;
    }


    The following part is the haskell program I came up with, without using anything specific for parsing or math evaluation.



    import Control.Monad.State
    import Data.Char

    data MathStacks = MathStacks { numbers :: [Int]
    , operators :: [Char]
    , current :: Int }
    deriving Show

    data EvalErr = ParseErr { position :: Int, reason :: String }
    | StackErr String
    | OpErr String
    deriving Show

    collapseOn :: MathStacks -> [Char] -> Either EvalErr MathStacks
    collapseOn ms@(MathStacks ns ops _) permittedOps
    | null ops = return ms
    | length ns < 2 = Left $ StackErr ("numbers length < 2:" ++ show ns)
    | not $ op `elem` "+-*" = Left $ OpErr ("invalid op=" ++ [op])
    | not $ op `elem` permittedOps = return ms
    | otherwise = do
    n <- calc op n1 n2
    return $ ms { numbers=(n:nrest), operators=oprest }
    where (n2:n1:nrest) = ns
    (op:oprest) = ops

    calc :: Char -> Int -> Int -> Either EvalErr Int
    calc c n1 n2
    | c == '+' = return $ n1 + n2
    | c == '-' = return $ n1 - n2
    | c == '*' = return $ n1 * n2
    | otherwise = Left $ OpErr ("invalid op=" ++ [c])

    exec :: MathStacks -> Either EvalErr MathStacks
    exec ms@(MathStacks ns ops curr)
    | nlen /= olen + 1 = Left $ StackErr ("inconsistent stacks")
    | olen == 0 = Right ms
    | otherwise = do
    let (n2:n1:nrest) = ns
    (op:oprest) = ops
    n <- calc op n1 n2
    return $ MathStacks (n:nrest) oprest curr
    where nlen = length ns
    olen = length ops

    exec' :: MathStacks -> Either EvalErr MathStacks
    exec' ms@(MathStacks ns ops _)
    | null ops = return ms
    | otherwise = (exec ms) >>= exec'

    eval :: MathStacks -> Either EvalErr Int
    eval (MathStacks ns ops curr)
    | nlen /= 1 || olen /= 0 = Left $ StackErr ("inconsistent stacks")
    | otherwise = Right $ head ns
    where nlen = length ns
    olen = length ops

    horner :: Int -> Int -> Int
    horner digit num = num * 10 + digit

    updateCurr :: Int -> MathStacks -> MathStacks
    updateCurr digit ms@(MathStacks _ _ curr) = ms { current=horner digit curr }

    updateOps :: Char -> MathStacks -> Either EvalErr MathStacks
    updateOps op ms@(MathStacks _ ops _)
    | op `elem` ['+', '-', '*'] = return $ ms { operators=(op:ops) }
    | otherwise = Left $ OpErr ("invalid op=" ++ [op])

    updateNum :: MathStacks -> MathStacks
    updateNum ms@(MathStacks ns _ curr) = ms { numbers=(curr:ns), current=0 }

    parse :: (Char, Int) -> MathStacks -> Either EvalErr MathStacks
    parse (c, idx) ms@(MathStacks ns ops curr)
    | c `elem` ['+', '-', '*'] = do
    -- current number run is done
    let ms0 = updateNum ms
    -- if there is existing multiplication on top. collapse it
    ms1 <- collapseOn ms0 "*"
    ms2 <- if c == '+' || c == '-'
    -- if there is existing addition or subtraction, do it
    then collapseOn ms1 "+-"
    else return ms1
    updateOps c ms2
    | isDigit c = Right $ updateCurr (digitToInt c) ms
    | otherwise = Left $
    ParseErr idx ("err char at pos=" ++ show idx ++ " char:" ++ [c])
    where nlen = length ns
    olen = length ops

    updateOnceT :: StateT MathStacks (Either EvalErr) ()
    updateOnceT = do -- in side of StateT MathStacks (Either EvalErr) monad
    ms <- get
    ms' <- lift $ exec ms
    put ms'

    evalCharT :: (Char, Int) -> StateT MathStacks (Either EvalErr) ()
    evalCharT (c, idx) = do
    ms <- get -- ms :: MathStacks
    -- promotes from Either EvalErr MathStacks type to StateT monad
    ms' <- lift $ parse (c, idx) ms
    put ms'


    evalStringT :: String -> StateT MathStacks (Either EvalErr) ()
    evalStringT s = mapM_ evalCharT $ zip s [1..]

    evalStringE :: String -> Either EvalErr MathStacks
    evalStringE s = foldM (flip parse) emptyStack $ zip s [1..]

    calcStringE :: String -> Either EvalErr MathStacks
    calcStringE s = do
    (_, ms) <- (runStateT $ evalStringT s) emptyStack
    return ms


    top :: MathStacks -> Either EvalErr Int
    top ms = do
    let ns = numbers ms
    if null ns
    then Left $ StackErr "no value left"
    else return $ head ns

    calcString :: String -> Either EvalErr Int
    calcString s = do
    ms <- evalStringE s -- or use ms <- calcStringE s
    ms' <- exec' $ updateNum ms
    top ms'

    emptyStack = MathStacks 0

    main :: IO ()
    main = do
    print $ calcString "13+15"
    print $ calcString "3+25*4"
    print $ calcString "1-2*2*2+7"


    The solution is a much longer program than the C++ counterpart, which is not the impression I got with Haskell program. The part that I used StateT monad transformer is probably not necessary (function evalStringT and function calcStringE), however without these functions I don't think my solution will get much shorter. I am not even sure my solution is Haskellish enough so please point out anything that I can improve on my code. Thank you in advance.









    share









    $endgroup$















      0












      0








      0





      $begingroup$


      I have been studying Haskell by myself for about a little over a year. And I have been stuck at monad/monad transformers for quite a while until recently some examples I read online enlightened me. So I decided to try on the following problem with writing monadic Haskell code.



      The problem is to evaluate a string that contains only 0-9, +, - and *, which represents addition, subtraction and multiplication separately. The string itself should represent a valid math expression and starts with a number always.



      "3+5" -> 8
      "3+25*4" -> 103
      "1-2*2*2+7" -> 7


      The goal of the exercise is not to write a perfect parsing engine to evaluate any math expression but to try to learn to use monad as a tool to write program that could be relatively straight forward in an imperative language such as C++, for example:



      #include <stack>
      #include <iostream>
      #include <string>
      #include <stdexcept>

      using namespace std;

      int calc(char c, int n1, int n2)
      {
      // cout << c << "-->" << n1 << " and " << n2 << endl;
      if (c == '+') return n1+n2;
      else if (c == '-') return n1-n2;
      else if (c == '*') return n1*n2;
      else throw runtime_error("bad operator");
      }

      void update(stack<int>& numbers, stack<char>& operators)
      {
      if (operators.size() + 1 != numbers.size()) throw runtime_error("bad");
      char op = operators.top();
      operators.pop();

      int n2 = numbers.top();
      numbers.pop();

      int n1 = numbers.top();
      numbers.pop();

      numbers.push(calc(op, n1, n2));
      }

      int processMath(const string& input) {
      int num = 0;

      stack<int> numbers;
      stack<char> operators;

      for (char c : input) {
      if (c == '+' || c == '-' || c == '*') {
      numbers.push(num);
      num = 0; // reset number
      if (c == '*' && !operators.empty() && operators.top() == '*') {
      update(numbers, operators);
      } else if (c == '+' || c == '-') { // c is + or -
      while (!operators.empty()) update(numbers, operators);
      }
      operators.push(c);
      } else {
      num = num*10+(c-'0');
      // cout << "num=" << num << endl;
      }
      }
      numbers.push(num);
      while (!operators.empty()) update(numbers, operators);
      return numbers.top();
      }

      // To execute C++, please define "int main()"
      int main() {

      string exp1 = "13+15";
      string exp2 = "3+25*4";
      string exp3 = "1-2*2*2+7";

      cout << exp1 << endl << processMath(exp1) << endl << endl;
      cout << exp2 << endl << processMath(exp2) << endl << endl;
      cout << exp3 << endl << processMath(exp3) << endl << endl;

      return 0;
      }


      The following part is the haskell program I came up with, without using anything specific for parsing or math evaluation.



      import Control.Monad.State
      import Data.Char

      data MathStacks = MathStacks { numbers :: [Int]
      , operators :: [Char]
      , current :: Int }
      deriving Show

      data EvalErr = ParseErr { position :: Int, reason :: String }
      | StackErr String
      | OpErr String
      deriving Show

      collapseOn :: MathStacks -> [Char] -> Either EvalErr MathStacks
      collapseOn ms@(MathStacks ns ops _) permittedOps
      | null ops = return ms
      | length ns < 2 = Left $ StackErr ("numbers length < 2:" ++ show ns)
      | not $ op `elem` "+-*" = Left $ OpErr ("invalid op=" ++ [op])
      | not $ op `elem` permittedOps = return ms
      | otherwise = do
      n <- calc op n1 n2
      return $ ms { numbers=(n:nrest), operators=oprest }
      where (n2:n1:nrest) = ns
      (op:oprest) = ops

      calc :: Char -> Int -> Int -> Either EvalErr Int
      calc c n1 n2
      | c == '+' = return $ n1 + n2
      | c == '-' = return $ n1 - n2
      | c == '*' = return $ n1 * n2
      | otherwise = Left $ OpErr ("invalid op=" ++ [c])

      exec :: MathStacks -> Either EvalErr MathStacks
      exec ms@(MathStacks ns ops curr)
      | nlen /= olen + 1 = Left $ StackErr ("inconsistent stacks")
      | olen == 0 = Right ms
      | otherwise = do
      let (n2:n1:nrest) = ns
      (op:oprest) = ops
      n <- calc op n1 n2
      return $ MathStacks (n:nrest) oprest curr
      where nlen = length ns
      olen = length ops

      exec' :: MathStacks -> Either EvalErr MathStacks
      exec' ms@(MathStacks ns ops _)
      | null ops = return ms
      | otherwise = (exec ms) >>= exec'

      eval :: MathStacks -> Either EvalErr Int
      eval (MathStacks ns ops curr)
      | nlen /= 1 || olen /= 0 = Left $ StackErr ("inconsistent stacks")
      | otherwise = Right $ head ns
      where nlen = length ns
      olen = length ops

      horner :: Int -> Int -> Int
      horner digit num = num * 10 + digit

      updateCurr :: Int -> MathStacks -> MathStacks
      updateCurr digit ms@(MathStacks _ _ curr) = ms { current=horner digit curr }

      updateOps :: Char -> MathStacks -> Either EvalErr MathStacks
      updateOps op ms@(MathStacks _ ops _)
      | op `elem` ['+', '-', '*'] = return $ ms { operators=(op:ops) }
      | otherwise = Left $ OpErr ("invalid op=" ++ [op])

      updateNum :: MathStacks -> MathStacks
      updateNum ms@(MathStacks ns _ curr) = ms { numbers=(curr:ns), current=0 }

      parse :: (Char, Int) -> MathStacks -> Either EvalErr MathStacks
      parse (c, idx) ms@(MathStacks ns ops curr)
      | c `elem` ['+', '-', '*'] = do
      -- current number run is done
      let ms0 = updateNum ms
      -- if there is existing multiplication on top. collapse it
      ms1 <- collapseOn ms0 "*"
      ms2 <- if c == '+' || c == '-'
      -- if there is existing addition or subtraction, do it
      then collapseOn ms1 "+-"
      else return ms1
      updateOps c ms2
      | isDigit c = Right $ updateCurr (digitToInt c) ms
      | otherwise = Left $
      ParseErr idx ("err char at pos=" ++ show idx ++ " char:" ++ [c])
      where nlen = length ns
      olen = length ops

      updateOnceT :: StateT MathStacks (Either EvalErr) ()
      updateOnceT = do -- in side of StateT MathStacks (Either EvalErr) monad
      ms <- get
      ms' <- lift $ exec ms
      put ms'

      evalCharT :: (Char, Int) -> StateT MathStacks (Either EvalErr) ()
      evalCharT (c, idx) = do
      ms <- get -- ms :: MathStacks
      -- promotes from Either EvalErr MathStacks type to StateT monad
      ms' <- lift $ parse (c, idx) ms
      put ms'


      evalStringT :: String -> StateT MathStacks (Either EvalErr) ()
      evalStringT s = mapM_ evalCharT $ zip s [1..]

      evalStringE :: String -> Either EvalErr MathStacks
      evalStringE s = foldM (flip parse) emptyStack $ zip s [1..]

      calcStringE :: String -> Either EvalErr MathStacks
      calcStringE s = do
      (_, ms) <- (runStateT $ evalStringT s) emptyStack
      return ms


      top :: MathStacks -> Either EvalErr Int
      top ms = do
      let ns = numbers ms
      if null ns
      then Left $ StackErr "no value left"
      else return $ head ns

      calcString :: String -> Either EvalErr Int
      calcString s = do
      ms <- evalStringE s -- or use ms <- calcStringE s
      ms' <- exec' $ updateNum ms
      top ms'

      emptyStack = MathStacks 0

      main :: IO ()
      main = do
      print $ calcString "13+15"
      print $ calcString "3+25*4"
      print $ calcString "1-2*2*2+7"


      The solution is a much longer program than the C++ counterpart, which is not the impression I got with Haskell program. The part that I used StateT monad transformer is probably not necessary (function evalStringT and function calcStringE), however without these functions I don't think my solution will get much shorter. I am not even sure my solution is Haskellish enough so please point out anything that I can improve on my code. Thank you in advance.









      share









      $endgroup$




      I have been studying Haskell by myself for about a little over a year. And I have been stuck at monad/monad transformers for quite a while until recently some examples I read online enlightened me. So I decided to try on the following problem with writing monadic Haskell code.



      The problem is to evaluate a string that contains only 0-9, +, - and *, which represents addition, subtraction and multiplication separately. The string itself should represent a valid math expression and starts with a number always.



      "3+5" -> 8
      "3+25*4" -> 103
      "1-2*2*2+7" -> 7


      The goal of the exercise is not to write a perfect parsing engine to evaluate any math expression but to try to learn to use monad as a tool to write program that could be relatively straight forward in an imperative language such as C++, for example:



      #include <stack>
      #include <iostream>
      #include <string>
      #include <stdexcept>

      using namespace std;

      int calc(char c, int n1, int n2)
      {
      // cout << c << "-->" << n1 << " and " << n2 << endl;
      if (c == '+') return n1+n2;
      else if (c == '-') return n1-n2;
      else if (c == '*') return n1*n2;
      else throw runtime_error("bad operator");
      }

      void update(stack<int>& numbers, stack<char>& operators)
      {
      if (operators.size() + 1 != numbers.size()) throw runtime_error("bad");
      char op = operators.top();
      operators.pop();

      int n2 = numbers.top();
      numbers.pop();

      int n1 = numbers.top();
      numbers.pop();

      numbers.push(calc(op, n1, n2));
      }

      int processMath(const string& input) {
      int num = 0;

      stack<int> numbers;
      stack<char> operators;

      for (char c : input) {
      if (c == '+' || c == '-' || c == '*') {
      numbers.push(num);
      num = 0; // reset number
      if (c == '*' && !operators.empty() && operators.top() == '*') {
      update(numbers, operators);
      } else if (c == '+' || c == '-') { // c is + or -
      while (!operators.empty()) update(numbers, operators);
      }
      operators.push(c);
      } else {
      num = num*10+(c-'0');
      // cout << "num=" << num << endl;
      }
      }
      numbers.push(num);
      while (!operators.empty()) update(numbers, operators);
      return numbers.top();
      }

      // To execute C++, please define "int main()"
      int main() {

      string exp1 = "13+15";
      string exp2 = "3+25*4";
      string exp3 = "1-2*2*2+7";

      cout << exp1 << endl << processMath(exp1) << endl << endl;
      cout << exp2 << endl << processMath(exp2) << endl << endl;
      cout << exp3 << endl << processMath(exp3) << endl << endl;

      return 0;
      }


      The following part is the haskell program I came up with, without using anything specific for parsing or math evaluation.



      import Control.Monad.State
      import Data.Char

      data MathStacks = MathStacks { numbers :: [Int]
      , operators :: [Char]
      , current :: Int }
      deriving Show

      data EvalErr = ParseErr { position :: Int, reason :: String }
      | StackErr String
      | OpErr String
      deriving Show

      collapseOn :: MathStacks -> [Char] -> Either EvalErr MathStacks
      collapseOn ms@(MathStacks ns ops _) permittedOps
      | null ops = return ms
      | length ns < 2 = Left $ StackErr ("numbers length < 2:" ++ show ns)
      | not $ op `elem` "+-*" = Left $ OpErr ("invalid op=" ++ [op])
      | not $ op `elem` permittedOps = return ms
      | otherwise = do
      n <- calc op n1 n2
      return $ ms { numbers=(n:nrest), operators=oprest }
      where (n2:n1:nrest) = ns
      (op:oprest) = ops

      calc :: Char -> Int -> Int -> Either EvalErr Int
      calc c n1 n2
      | c == '+' = return $ n1 + n2
      | c == '-' = return $ n1 - n2
      | c == '*' = return $ n1 * n2
      | otherwise = Left $ OpErr ("invalid op=" ++ [c])

      exec :: MathStacks -> Either EvalErr MathStacks
      exec ms@(MathStacks ns ops curr)
      | nlen /= olen + 1 = Left $ StackErr ("inconsistent stacks")
      | olen == 0 = Right ms
      | otherwise = do
      let (n2:n1:nrest) = ns
      (op:oprest) = ops
      n <- calc op n1 n2
      return $ MathStacks (n:nrest) oprest curr
      where nlen = length ns
      olen = length ops

      exec' :: MathStacks -> Either EvalErr MathStacks
      exec' ms@(MathStacks ns ops _)
      | null ops = return ms
      | otherwise = (exec ms) >>= exec'

      eval :: MathStacks -> Either EvalErr Int
      eval (MathStacks ns ops curr)
      | nlen /= 1 || olen /= 0 = Left $ StackErr ("inconsistent stacks")
      | otherwise = Right $ head ns
      where nlen = length ns
      olen = length ops

      horner :: Int -> Int -> Int
      horner digit num = num * 10 + digit

      updateCurr :: Int -> MathStacks -> MathStacks
      updateCurr digit ms@(MathStacks _ _ curr) = ms { current=horner digit curr }

      updateOps :: Char -> MathStacks -> Either EvalErr MathStacks
      updateOps op ms@(MathStacks _ ops _)
      | op `elem` ['+', '-', '*'] = return $ ms { operators=(op:ops) }
      | otherwise = Left $ OpErr ("invalid op=" ++ [op])

      updateNum :: MathStacks -> MathStacks
      updateNum ms@(MathStacks ns _ curr) = ms { numbers=(curr:ns), current=0 }

      parse :: (Char, Int) -> MathStacks -> Either EvalErr MathStacks
      parse (c, idx) ms@(MathStacks ns ops curr)
      | c `elem` ['+', '-', '*'] = do
      -- current number run is done
      let ms0 = updateNum ms
      -- if there is existing multiplication on top. collapse it
      ms1 <- collapseOn ms0 "*"
      ms2 <- if c == '+' || c == '-'
      -- if there is existing addition or subtraction, do it
      then collapseOn ms1 "+-"
      else return ms1
      updateOps c ms2
      | isDigit c = Right $ updateCurr (digitToInt c) ms
      | otherwise = Left $
      ParseErr idx ("err char at pos=" ++ show idx ++ " char:" ++ [c])
      where nlen = length ns
      olen = length ops

      updateOnceT :: StateT MathStacks (Either EvalErr) ()
      updateOnceT = do -- in side of StateT MathStacks (Either EvalErr) monad
      ms <- get
      ms' <- lift $ exec ms
      put ms'

      evalCharT :: (Char, Int) -> StateT MathStacks (Either EvalErr) ()
      evalCharT (c, idx) = do
      ms <- get -- ms :: MathStacks
      -- promotes from Either EvalErr MathStacks type to StateT monad
      ms' <- lift $ parse (c, idx) ms
      put ms'


      evalStringT :: String -> StateT MathStacks (Either EvalErr) ()
      evalStringT s = mapM_ evalCharT $ zip s [1..]

      evalStringE :: String -> Either EvalErr MathStacks
      evalStringE s = foldM (flip parse) emptyStack $ zip s [1..]

      calcStringE :: String -> Either EvalErr MathStacks
      calcStringE s = do
      (_, ms) <- (runStateT $ evalStringT s) emptyStack
      return ms


      top :: MathStacks -> Either EvalErr Int
      top ms = do
      let ns = numbers ms
      if null ns
      then Left $ StackErr "no value left"
      else return $ head ns

      calcString :: String -> Either EvalErr Int
      calcString s = do
      ms <- evalStringE s -- or use ms <- calcStringE s
      ms' <- exec' $ updateNum ms
      top ms'

      emptyStack = MathStacks 0

      main :: IO ()
      main = do
      print $ calcString "13+15"
      print $ calcString "3+25*4"
      print $ calcString "1-2*2*2+7"


      The solution is a much longer program than the C++ counterpart, which is not the impression I got with Haskell program. The part that I used StateT monad transformer is probably not necessary (function evalStringT and function calcStringE), however without these functions I don't think my solution will get much shorter. I am not even sure my solution is Haskellish enough so please point out anything that I can improve on my code. Thank you in advance.







      haskell math-expression-eval monads





      share












      share










      share



      share










      asked 4 mins ago









      dhudhu

      685




      685






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "196"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f211966%2fwriting-monadic-haskell-to-evaluate-arithmetic-expression%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Code Review Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f211966%2fwriting-monadic-haskell-to-evaluate-arithmetic-expression%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          404 Error Contact Form 7 ajax form submitting

          How to know if a Active Directory user can login interactively

          How to resolve this name issue having white space while installing the android Studio.?