Finding sum of none arithmetic series
$begingroup$
I have a question to find the sum of the following sum:
$$
S = small{1*1+2*3+3*5+4*7+...+100*199}
$$
I figured out that for each element in this series the following holds:
$$
a_n = a_{n-1} + 4n - 3
$$
But I don't know where to go from here, I tried subtracting some other series but that did not work very well
sequences-and-series summation telescopic-series
$endgroup$
add a comment |
$begingroup$
I have a question to find the sum of the following sum:
$$
S = small{1*1+2*3+3*5+4*7+...+100*199}
$$
I figured out that for each element in this series the following holds:
$$
a_n = a_{n-1} + 4n - 3
$$
But I don't know where to go from here, I tried subtracting some other series but that did not work very well
sequences-and-series summation telescopic-series
$endgroup$
add a comment |
$begingroup$
I have a question to find the sum of the following sum:
$$
S = small{1*1+2*3+3*5+4*7+...+100*199}
$$
I figured out that for each element in this series the following holds:
$$
a_n = a_{n-1} + 4n - 3
$$
But I don't know where to go from here, I tried subtracting some other series but that did not work very well
sequences-and-series summation telescopic-series
$endgroup$
I have a question to find the sum of the following sum:
$$
S = small{1*1+2*3+3*5+4*7+...+100*199}
$$
I figured out that for each element in this series the following holds:
$$
a_n = a_{n-1} + 4n - 3
$$
But I don't know where to go from here, I tried subtracting some other series but that did not work very well
sequences-and-series summation telescopic-series
sequences-and-series summation telescopic-series
edited 19 mins ago
Michael Rozenberg
99.4k1590189
99.4k1590189
asked 1 hour ago
Guysudai1Guysudai1
1149
1149
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Each term in the equation is $n(2n-1)$, so $$S=sum_{i=1}^{100}{n(2n-1)}=2sum_{i=1}^{100} n^2-sum_{i=1}^{100} n=2frac{m(m+1)(2m+1)}{6}-frac{m(m+1)}{2}$$
where $m=100$.
$endgroup$
add a comment |
$begingroup$
This is, for $n=100$,
$s(n)
=sum_{k=1}^n k(2k-1)
=sum_{k=1}^n (2k^2-k)
=2sum_{k=1}^n k^2
-sum_{k=1}^n k
$.
Plug in the formulas for the sums
and you are done.
$endgroup$
add a comment |
$begingroup$
$a_n=sum_{r=1}^n(4r-3)+a_0=dfrac n2(1+4n-3)+a_0=2n^2-n+a_0$
$$sum_{n=1}^ma_n=2sum_{n=1}^mn^2-sum_{n=1}^mn+a_0sum_{n=1}^m1$$
Here $a_0=0$
Alternatively,
$$a_m=b_m+a+bm+cm^2$$
$$4n-3=a_n-a_{n-1}=b_n-b_{n-1}+b+c(2n-1)=b_n-b_{n-1}+2c(n)+b-c$$
WLOG set $2c=4,b-c=-3iff c=b+3$ to find $b_n=b_{n-1}$
set $a=0$ so that $b_m=a_m=0$
$endgroup$
$begingroup$
Use math.stackexchange.com/questions/1806906/… or math.stackexchange.com/questions/2992733/… or math.stackexchange.com/questions/1339732/… or math.stackexchange.com/questions/183316/…
$endgroup$
– lab bhattacharjee
1 hour ago
add a comment |
$begingroup$
By the telescoping sum we obtain: $$sum_{n=1}^{100}n(2n-1)=sum_{n=1}^{100}left(frac{n(n+1)(4n-1)}{6}-frac{(n-1)n(4n-5)}{6}right)=$$
$$=frac{100cdot101cdot399}{6}=671650.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088304%2ffinding-sum-of-none-arithmetic-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Each term in the equation is $n(2n-1)$, so $$S=sum_{i=1}^{100}{n(2n-1)}=2sum_{i=1}^{100} n^2-sum_{i=1}^{100} n=2frac{m(m+1)(2m+1)}{6}-frac{m(m+1)}{2}$$
where $m=100$.
$endgroup$
add a comment |
$begingroup$
Each term in the equation is $n(2n-1)$, so $$S=sum_{i=1}^{100}{n(2n-1)}=2sum_{i=1}^{100} n^2-sum_{i=1}^{100} n=2frac{m(m+1)(2m+1)}{6}-frac{m(m+1)}{2}$$
where $m=100$.
$endgroup$
add a comment |
$begingroup$
Each term in the equation is $n(2n-1)$, so $$S=sum_{i=1}^{100}{n(2n-1)}=2sum_{i=1}^{100} n^2-sum_{i=1}^{100} n=2frac{m(m+1)(2m+1)}{6}-frac{m(m+1)}{2}$$
where $m=100$.
$endgroup$
Each term in the equation is $n(2n-1)$, so $$S=sum_{i=1}^{100}{n(2n-1)}=2sum_{i=1}^{100} n^2-sum_{i=1}^{100} n=2frac{m(m+1)(2m+1)}{6}-frac{m(m+1)}{2}$$
where $m=100$.
answered 1 hour ago
gunesgunes
2645
2645
add a comment |
add a comment |
$begingroup$
This is, for $n=100$,
$s(n)
=sum_{k=1}^n k(2k-1)
=sum_{k=1}^n (2k^2-k)
=2sum_{k=1}^n k^2
-sum_{k=1}^n k
$.
Plug in the formulas for the sums
and you are done.
$endgroup$
add a comment |
$begingroup$
This is, for $n=100$,
$s(n)
=sum_{k=1}^n k(2k-1)
=sum_{k=1}^n (2k^2-k)
=2sum_{k=1}^n k^2
-sum_{k=1}^n k
$.
Plug in the formulas for the sums
and you are done.
$endgroup$
add a comment |
$begingroup$
This is, for $n=100$,
$s(n)
=sum_{k=1}^n k(2k-1)
=sum_{k=1}^n (2k^2-k)
=2sum_{k=1}^n k^2
-sum_{k=1}^n k
$.
Plug in the formulas for the sums
and you are done.
$endgroup$
This is, for $n=100$,
$s(n)
=sum_{k=1}^n k(2k-1)
=sum_{k=1}^n (2k^2-k)
=2sum_{k=1}^n k^2
-sum_{k=1}^n k
$.
Plug in the formulas for the sums
and you are done.
answered 1 hour ago
marty cohenmarty cohen
73.4k549128
73.4k549128
add a comment |
add a comment |
$begingroup$
$a_n=sum_{r=1}^n(4r-3)+a_0=dfrac n2(1+4n-3)+a_0=2n^2-n+a_0$
$$sum_{n=1}^ma_n=2sum_{n=1}^mn^2-sum_{n=1}^mn+a_0sum_{n=1}^m1$$
Here $a_0=0$
Alternatively,
$$a_m=b_m+a+bm+cm^2$$
$$4n-3=a_n-a_{n-1}=b_n-b_{n-1}+b+c(2n-1)=b_n-b_{n-1}+2c(n)+b-c$$
WLOG set $2c=4,b-c=-3iff c=b+3$ to find $b_n=b_{n-1}$
set $a=0$ so that $b_m=a_m=0$
$endgroup$
$begingroup$
Use math.stackexchange.com/questions/1806906/… or math.stackexchange.com/questions/2992733/… or math.stackexchange.com/questions/1339732/… or math.stackexchange.com/questions/183316/…
$endgroup$
– lab bhattacharjee
1 hour ago
add a comment |
$begingroup$
$a_n=sum_{r=1}^n(4r-3)+a_0=dfrac n2(1+4n-3)+a_0=2n^2-n+a_0$
$$sum_{n=1}^ma_n=2sum_{n=1}^mn^2-sum_{n=1}^mn+a_0sum_{n=1}^m1$$
Here $a_0=0$
Alternatively,
$$a_m=b_m+a+bm+cm^2$$
$$4n-3=a_n-a_{n-1}=b_n-b_{n-1}+b+c(2n-1)=b_n-b_{n-1}+2c(n)+b-c$$
WLOG set $2c=4,b-c=-3iff c=b+3$ to find $b_n=b_{n-1}$
set $a=0$ so that $b_m=a_m=0$
$endgroup$
$begingroup$
Use math.stackexchange.com/questions/1806906/… or math.stackexchange.com/questions/2992733/… or math.stackexchange.com/questions/1339732/… or math.stackexchange.com/questions/183316/…
$endgroup$
– lab bhattacharjee
1 hour ago
add a comment |
$begingroup$
$a_n=sum_{r=1}^n(4r-3)+a_0=dfrac n2(1+4n-3)+a_0=2n^2-n+a_0$
$$sum_{n=1}^ma_n=2sum_{n=1}^mn^2-sum_{n=1}^mn+a_0sum_{n=1}^m1$$
Here $a_0=0$
Alternatively,
$$a_m=b_m+a+bm+cm^2$$
$$4n-3=a_n-a_{n-1}=b_n-b_{n-1}+b+c(2n-1)=b_n-b_{n-1}+2c(n)+b-c$$
WLOG set $2c=4,b-c=-3iff c=b+3$ to find $b_n=b_{n-1}$
set $a=0$ so that $b_m=a_m=0$
$endgroup$
$a_n=sum_{r=1}^n(4r-3)+a_0=dfrac n2(1+4n-3)+a_0=2n^2-n+a_0$
$$sum_{n=1}^ma_n=2sum_{n=1}^mn^2-sum_{n=1}^mn+a_0sum_{n=1}^m1$$
Here $a_0=0$
Alternatively,
$$a_m=b_m+a+bm+cm^2$$
$$4n-3=a_n-a_{n-1}=b_n-b_{n-1}+b+c(2n-1)=b_n-b_{n-1}+2c(n)+b-c$$
WLOG set $2c=4,b-c=-3iff c=b+3$ to find $b_n=b_{n-1}$
set $a=0$ so that $b_m=a_m=0$
edited 1 hour ago
answered 1 hour ago
lab bhattacharjeelab bhattacharjee
225k15156274
225k15156274
$begingroup$
Use math.stackexchange.com/questions/1806906/… or math.stackexchange.com/questions/2992733/… or math.stackexchange.com/questions/1339732/… or math.stackexchange.com/questions/183316/…
$endgroup$
– lab bhattacharjee
1 hour ago
add a comment |
$begingroup$
Use math.stackexchange.com/questions/1806906/… or math.stackexchange.com/questions/2992733/… or math.stackexchange.com/questions/1339732/… or math.stackexchange.com/questions/183316/…
$endgroup$
– lab bhattacharjee
1 hour ago
$begingroup$
Use math.stackexchange.com/questions/1806906/… or math.stackexchange.com/questions/2992733/… or math.stackexchange.com/questions/1339732/… or math.stackexchange.com/questions/183316/…
$endgroup$
– lab bhattacharjee
1 hour ago
$begingroup$
Use math.stackexchange.com/questions/1806906/… or math.stackexchange.com/questions/2992733/… or math.stackexchange.com/questions/1339732/… or math.stackexchange.com/questions/183316/…
$endgroup$
– lab bhattacharjee
1 hour ago
add a comment |
$begingroup$
By the telescoping sum we obtain: $$sum_{n=1}^{100}n(2n-1)=sum_{n=1}^{100}left(frac{n(n+1)(4n-1)}{6}-frac{(n-1)n(4n-5)}{6}right)=$$
$$=frac{100cdot101cdot399}{6}=671650.$$
$endgroup$
add a comment |
$begingroup$
By the telescoping sum we obtain: $$sum_{n=1}^{100}n(2n-1)=sum_{n=1}^{100}left(frac{n(n+1)(4n-1)}{6}-frac{(n-1)n(4n-5)}{6}right)=$$
$$=frac{100cdot101cdot399}{6}=671650.$$
$endgroup$
add a comment |
$begingroup$
By the telescoping sum we obtain: $$sum_{n=1}^{100}n(2n-1)=sum_{n=1}^{100}left(frac{n(n+1)(4n-1)}{6}-frac{(n-1)n(4n-5)}{6}right)=$$
$$=frac{100cdot101cdot399}{6}=671650.$$
$endgroup$
By the telescoping sum we obtain: $$sum_{n=1}^{100}n(2n-1)=sum_{n=1}^{100}left(frac{n(n+1)(4n-1)}{6}-frac{(n-1)n(4n-5)}{6}right)=$$
$$=frac{100cdot101cdot399}{6}=671650.$$
answered 31 mins ago
Michael RozenbergMichael Rozenberg
99.4k1590189
99.4k1590189
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088304%2ffinding-sum-of-none-arithmetic-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown