Finding sum of none arithmetic series












1












$begingroup$


I have a question to find the sum of the following sum:
$$
S = small{1*1+2*3+3*5+4*7+...+100*199}
$$

I figured out that for each element in this series the following holds:
$$
a_n = a_{n-1} + 4n - 3
$$

But I don't know where to go from here, I tried subtracting some other series but that did not work very well










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    I have a question to find the sum of the following sum:
    $$
    S = small{1*1+2*3+3*5+4*7+...+100*199}
    $$

    I figured out that for each element in this series the following holds:
    $$
    a_n = a_{n-1} + 4n - 3
    $$

    But I don't know where to go from here, I tried subtracting some other series but that did not work very well










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      0



      $begingroup$


      I have a question to find the sum of the following sum:
      $$
      S = small{1*1+2*3+3*5+4*7+...+100*199}
      $$

      I figured out that for each element in this series the following holds:
      $$
      a_n = a_{n-1} + 4n - 3
      $$

      But I don't know where to go from here, I tried subtracting some other series but that did not work very well










      share|cite|improve this question











      $endgroup$




      I have a question to find the sum of the following sum:
      $$
      S = small{1*1+2*3+3*5+4*7+...+100*199}
      $$

      I figured out that for each element in this series the following holds:
      $$
      a_n = a_{n-1} + 4n - 3
      $$

      But I don't know where to go from here, I tried subtracting some other series but that did not work very well







      sequences-and-series summation telescopic-series






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 19 mins ago









      Michael Rozenberg

      99.4k1590189




      99.4k1590189










      asked 1 hour ago









      Guysudai1Guysudai1

      1149




      1149






















          4 Answers
          4






          active

          oldest

          votes


















          2












          $begingroup$

          Each term in the equation is $n(2n-1)$, so $$S=sum_{i=1}^{100}{n(2n-1)}=2sum_{i=1}^{100} n^2-sum_{i=1}^{100} n=2frac{m(m+1)(2m+1)}{6}-frac{m(m+1)}{2}$$
          where $m=100$.






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            This is, for $n=100$,
            $s(n)
            =sum_{k=1}^n k(2k-1)
            =sum_{k=1}^n (2k^2-k)
            =2sum_{k=1}^n k^2
            -sum_{k=1}^n k
            $
            .



            Plug in the formulas for the sums
            and you are done.






            share|cite|improve this answer









            $endgroup$





















              1












              $begingroup$

              $a_n=sum_{r=1}^n(4r-3)+a_0=dfrac n2(1+4n-3)+a_0=2n^2-n+a_0$



              $$sum_{n=1}^ma_n=2sum_{n=1}^mn^2-sum_{n=1}^mn+a_0sum_{n=1}^m1$$



              Here $a_0=0$



              Alternatively,



              $$a_m=b_m+a+bm+cm^2$$



              $$4n-3=a_n-a_{n-1}=b_n-b_{n-1}+b+c(2n-1)=b_n-b_{n-1}+2c(n)+b-c$$



              WLOG set $2c=4,b-c=-3iff c=b+3$ to find $b_n=b_{n-1}$



              set $a=0$ so that $b_m=a_m=0$






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Use math.stackexchange.com/questions/1806906/… or math.stackexchange.com/questions/2992733/… or math.stackexchange.com/questions/1339732/… or math.stackexchange.com/questions/183316/…
                $endgroup$
                – lab bhattacharjee
                1 hour ago



















              1












              $begingroup$

              By the telescoping sum we obtain: $$sum_{n=1}^{100}n(2n-1)=sum_{n=1}^{100}left(frac{n(n+1)(4n-1)}{6}-frac{(n-1)n(4n-5)}{6}right)=$$
              $$=frac{100cdot101cdot399}{6}=671650.$$






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088304%2ffinding-sum-of-none-arithmetic-series%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                4 Answers
                4






                active

                oldest

                votes








                4 Answers
                4






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                2












                $begingroup$

                Each term in the equation is $n(2n-1)$, so $$S=sum_{i=1}^{100}{n(2n-1)}=2sum_{i=1}^{100} n^2-sum_{i=1}^{100} n=2frac{m(m+1)(2m+1)}{6}-frac{m(m+1)}{2}$$
                where $m=100$.






                share|cite|improve this answer









                $endgroup$


















                  2












                  $begingroup$

                  Each term in the equation is $n(2n-1)$, so $$S=sum_{i=1}^{100}{n(2n-1)}=2sum_{i=1}^{100} n^2-sum_{i=1}^{100} n=2frac{m(m+1)(2m+1)}{6}-frac{m(m+1)}{2}$$
                  where $m=100$.






                  share|cite|improve this answer









                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    Each term in the equation is $n(2n-1)$, so $$S=sum_{i=1}^{100}{n(2n-1)}=2sum_{i=1}^{100} n^2-sum_{i=1}^{100} n=2frac{m(m+1)(2m+1)}{6}-frac{m(m+1)}{2}$$
                    where $m=100$.






                    share|cite|improve this answer









                    $endgroup$



                    Each term in the equation is $n(2n-1)$, so $$S=sum_{i=1}^{100}{n(2n-1)}=2sum_{i=1}^{100} n^2-sum_{i=1}^{100} n=2frac{m(m+1)(2m+1)}{6}-frac{m(m+1)}{2}$$
                    where $m=100$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 1 hour ago









                    gunesgunes

                    2645




                    2645























                        1












                        $begingroup$

                        This is, for $n=100$,
                        $s(n)
                        =sum_{k=1}^n k(2k-1)
                        =sum_{k=1}^n (2k^2-k)
                        =2sum_{k=1}^n k^2
                        -sum_{k=1}^n k
                        $
                        .



                        Plug in the formulas for the sums
                        and you are done.






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          This is, for $n=100$,
                          $s(n)
                          =sum_{k=1}^n k(2k-1)
                          =sum_{k=1}^n (2k^2-k)
                          =2sum_{k=1}^n k^2
                          -sum_{k=1}^n k
                          $
                          .



                          Plug in the formulas for the sums
                          and you are done.






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            This is, for $n=100$,
                            $s(n)
                            =sum_{k=1}^n k(2k-1)
                            =sum_{k=1}^n (2k^2-k)
                            =2sum_{k=1}^n k^2
                            -sum_{k=1}^n k
                            $
                            .



                            Plug in the formulas for the sums
                            and you are done.






                            share|cite|improve this answer









                            $endgroup$



                            This is, for $n=100$,
                            $s(n)
                            =sum_{k=1}^n k(2k-1)
                            =sum_{k=1}^n (2k^2-k)
                            =2sum_{k=1}^n k^2
                            -sum_{k=1}^n k
                            $
                            .



                            Plug in the formulas for the sums
                            and you are done.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 1 hour ago









                            marty cohenmarty cohen

                            73.4k549128




                            73.4k549128























                                1












                                $begingroup$

                                $a_n=sum_{r=1}^n(4r-3)+a_0=dfrac n2(1+4n-3)+a_0=2n^2-n+a_0$



                                $$sum_{n=1}^ma_n=2sum_{n=1}^mn^2-sum_{n=1}^mn+a_0sum_{n=1}^m1$$



                                Here $a_0=0$



                                Alternatively,



                                $$a_m=b_m+a+bm+cm^2$$



                                $$4n-3=a_n-a_{n-1}=b_n-b_{n-1}+b+c(2n-1)=b_n-b_{n-1}+2c(n)+b-c$$



                                WLOG set $2c=4,b-c=-3iff c=b+3$ to find $b_n=b_{n-1}$



                                set $a=0$ so that $b_m=a_m=0$






                                share|cite|improve this answer











                                $endgroup$













                                • $begingroup$
                                  Use math.stackexchange.com/questions/1806906/… or math.stackexchange.com/questions/2992733/… or math.stackexchange.com/questions/1339732/… or math.stackexchange.com/questions/183316/…
                                  $endgroup$
                                  – lab bhattacharjee
                                  1 hour ago
















                                1












                                $begingroup$

                                $a_n=sum_{r=1}^n(4r-3)+a_0=dfrac n2(1+4n-3)+a_0=2n^2-n+a_0$



                                $$sum_{n=1}^ma_n=2sum_{n=1}^mn^2-sum_{n=1}^mn+a_0sum_{n=1}^m1$$



                                Here $a_0=0$



                                Alternatively,



                                $$a_m=b_m+a+bm+cm^2$$



                                $$4n-3=a_n-a_{n-1}=b_n-b_{n-1}+b+c(2n-1)=b_n-b_{n-1}+2c(n)+b-c$$



                                WLOG set $2c=4,b-c=-3iff c=b+3$ to find $b_n=b_{n-1}$



                                set $a=0$ so that $b_m=a_m=0$






                                share|cite|improve this answer











                                $endgroup$













                                • $begingroup$
                                  Use math.stackexchange.com/questions/1806906/… or math.stackexchange.com/questions/2992733/… or math.stackexchange.com/questions/1339732/… or math.stackexchange.com/questions/183316/…
                                  $endgroup$
                                  – lab bhattacharjee
                                  1 hour ago














                                1












                                1








                                1





                                $begingroup$

                                $a_n=sum_{r=1}^n(4r-3)+a_0=dfrac n2(1+4n-3)+a_0=2n^2-n+a_0$



                                $$sum_{n=1}^ma_n=2sum_{n=1}^mn^2-sum_{n=1}^mn+a_0sum_{n=1}^m1$$



                                Here $a_0=0$



                                Alternatively,



                                $$a_m=b_m+a+bm+cm^2$$



                                $$4n-3=a_n-a_{n-1}=b_n-b_{n-1}+b+c(2n-1)=b_n-b_{n-1}+2c(n)+b-c$$



                                WLOG set $2c=4,b-c=-3iff c=b+3$ to find $b_n=b_{n-1}$



                                set $a=0$ so that $b_m=a_m=0$






                                share|cite|improve this answer











                                $endgroup$



                                $a_n=sum_{r=1}^n(4r-3)+a_0=dfrac n2(1+4n-3)+a_0=2n^2-n+a_0$



                                $$sum_{n=1}^ma_n=2sum_{n=1}^mn^2-sum_{n=1}^mn+a_0sum_{n=1}^m1$$



                                Here $a_0=0$



                                Alternatively,



                                $$a_m=b_m+a+bm+cm^2$$



                                $$4n-3=a_n-a_{n-1}=b_n-b_{n-1}+b+c(2n-1)=b_n-b_{n-1}+2c(n)+b-c$$



                                WLOG set $2c=4,b-c=-3iff c=b+3$ to find $b_n=b_{n-1}$



                                set $a=0$ so that $b_m=a_m=0$







                                share|cite|improve this answer














                                share|cite|improve this answer



                                share|cite|improve this answer








                                edited 1 hour ago

























                                answered 1 hour ago









                                lab bhattacharjeelab bhattacharjee

                                225k15156274




                                225k15156274












                                • $begingroup$
                                  Use math.stackexchange.com/questions/1806906/… or math.stackexchange.com/questions/2992733/… or math.stackexchange.com/questions/1339732/… or math.stackexchange.com/questions/183316/…
                                  $endgroup$
                                  – lab bhattacharjee
                                  1 hour ago


















                                • $begingroup$
                                  Use math.stackexchange.com/questions/1806906/… or math.stackexchange.com/questions/2992733/… or math.stackexchange.com/questions/1339732/… or math.stackexchange.com/questions/183316/…
                                  $endgroup$
                                  – lab bhattacharjee
                                  1 hour ago
















                                $begingroup$
                                Use math.stackexchange.com/questions/1806906/… or math.stackexchange.com/questions/2992733/… or math.stackexchange.com/questions/1339732/… or math.stackexchange.com/questions/183316/…
                                $endgroup$
                                – lab bhattacharjee
                                1 hour ago




                                $begingroup$
                                Use math.stackexchange.com/questions/1806906/… or math.stackexchange.com/questions/2992733/… or math.stackexchange.com/questions/1339732/… or math.stackexchange.com/questions/183316/…
                                $endgroup$
                                – lab bhattacharjee
                                1 hour ago











                                1












                                $begingroup$

                                By the telescoping sum we obtain: $$sum_{n=1}^{100}n(2n-1)=sum_{n=1}^{100}left(frac{n(n+1)(4n-1)}{6}-frac{(n-1)n(4n-5)}{6}right)=$$
                                $$=frac{100cdot101cdot399}{6}=671650.$$






                                share|cite|improve this answer









                                $endgroup$


















                                  1












                                  $begingroup$

                                  By the telescoping sum we obtain: $$sum_{n=1}^{100}n(2n-1)=sum_{n=1}^{100}left(frac{n(n+1)(4n-1)}{6}-frac{(n-1)n(4n-5)}{6}right)=$$
                                  $$=frac{100cdot101cdot399}{6}=671650.$$






                                  share|cite|improve this answer









                                  $endgroup$
















                                    1












                                    1








                                    1





                                    $begingroup$

                                    By the telescoping sum we obtain: $$sum_{n=1}^{100}n(2n-1)=sum_{n=1}^{100}left(frac{n(n+1)(4n-1)}{6}-frac{(n-1)n(4n-5)}{6}right)=$$
                                    $$=frac{100cdot101cdot399}{6}=671650.$$






                                    share|cite|improve this answer









                                    $endgroup$



                                    By the telescoping sum we obtain: $$sum_{n=1}^{100}n(2n-1)=sum_{n=1}^{100}left(frac{n(n+1)(4n-1)}{6}-frac{(n-1)n(4n-5)}{6}right)=$$
                                    $$=frac{100cdot101cdot399}{6}=671650.$$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered 31 mins ago









                                    Michael RozenbergMichael Rozenberg

                                    99.4k1590189




                                    99.4k1590189






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088304%2ffinding-sum-of-none-arithmetic-series%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        404 Error Contact Form 7 ajax form submitting

                                        How to know if a Active Directory user can login interactively

                                        TypeError: fit_transform() missing 1 required positional argument: 'X'