What is the relationship between the orbit-stabilizer theorem and Lagrange's theorem?
Is Lagrange's theorem used to prove that the length of the orbit times the order of the stabilizer is the order of the group, or is Lagrange's theorem a corollary of the orbit-stabilizer theorem?
group-theory finite-groups group-actions
New contributor
add a comment |
Is Lagrange's theorem used to prove that the length of the orbit times the order of the stabilizer is the order of the group, or is Lagrange's theorem a corollary of the orbit-stabilizer theorem?
group-theory finite-groups group-actions
New contributor
add a comment |
Is Lagrange's theorem used to prove that the length of the orbit times the order of the stabilizer is the order of the group, or is Lagrange's theorem a corollary of the orbit-stabilizer theorem?
group-theory finite-groups group-actions
New contributor
Is Lagrange's theorem used to prove that the length of the orbit times the order of the stabilizer is the order of the group, or is Lagrange's theorem a corollary of the orbit-stabilizer theorem?
group-theory finite-groups group-actions
group-theory finite-groups group-actions
New contributor
New contributor
edited 59 mins ago
Shaun
8,691113680
8,691113680
New contributor
asked 1 hour ago
J. W. Tanner
112
112
New contributor
New contributor
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
Lagrange is a corollary, if $H$ is a subgroup of $G$, $H$ acts on $G$ by left multiplication, the orbit of $1$ is $H$ so $|H|Or(G/H)=|G|$ where $Or(G/H)$ is the cardinal of the orbit space.
add a comment |
Usually, Lagrange's theorem is used to prove orbit-stabilizer theorem, not the other way around. See the following proof from "Abstract Algebra: Theory and Aplications":
However, if someone could figure out how to prove orbit-stabilizer theorem without using Lagrange's Theorem, then you could prove Lagrange's Theorem as a corollary of the orbit-stabilizer theorem, as Tsemo Aristide showed.
1
See there, Lagrange's theorem is not needed to prove the orbit-stabilizer lemma, which is a really straightforward result: the bijection is explicit and canonical.
– C. Falcon
1 hour ago
@C.Falcon But doesn't that proof rely on the existence of $G / text{Stab}(x)$ as a quotient group, which relies on Lagrange's Theorem?
– Noble Mushtak
53 mins ago
In all generality, $G/operatorname{Stab}(x)$ is not a group, since $operatorname{Stab}(x)$ needs not to be normal in $G$, the map constructed in the linked proof is only a bijection, not a group morphism. Recall that $G/operatorname{Stab}(x)$ is just a set of equivalence classes and this construction can be done indepently of all results.
– C. Falcon
50 mins ago
1
@C.Falcon I see. However, even in that case, you need to know $G/text{Stab}(x)$ is a partition of $G$ in order to make the equivalence relation, and proving that all of the cosets of a subgroup partition the original group is basically Lagrange's Theorem. There's no way to go from the equation they prove, which is $text{Orb}(x)=[G : text{Stab}(x)]$, to the actual theorem, $|text{Orb}(x)|cdot |text{Stab}(x)|=|G|$, without using Lagrange's Theorem somehow.
– Noble Mushtak
45 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
J. W. Tanner is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056919%2fwhat-is-the-relationship-between-the-orbit-stabilizer-theorem-and-lagranges-the%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Lagrange is a corollary, if $H$ is a subgroup of $G$, $H$ acts on $G$ by left multiplication, the orbit of $1$ is $H$ so $|H|Or(G/H)=|G|$ where $Or(G/H)$ is the cardinal of the orbit space.
add a comment |
Lagrange is a corollary, if $H$ is a subgroup of $G$, $H$ acts on $G$ by left multiplication, the orbit of $1$ is $H$ so $|H|Or(G/H)=|G|$ where $Or(G/H)$ is the cardinal of the orbit space.
add a comment |
Lagrange is a corollary, if $H$ is a subgroup of $G$, $H$ acts on $G$ by left multiplication, the orbit of $1$ is $H$ so $|H|Or(G/H)=|G|$ where $Or(G/H)$ is the cardinal of the orbit space.
Lagrange is a corollary, if $H$ is a subgroup of $G$, $H$ acts on $G$ by left multiplication, the orbit of $1$ is $H$ so $|H|Or(G/H)=|G|$ where $Or(G/H)$ is the cardinal of the orbit space.
edited 57 mins ago
answered 1 hour ago
Tsemo Aristide
55.6k11444
55.6k11444
add a comment |
add a comment |
Usually, Lagrange's theorem is used to prove orbit-stabilizer theorem, not the other way around. See the following proof from "Abstract Algebra: Theory and Aplications":
However, if someone could figure out how to prove orbit-stabilizer theorem without using Lagrange's Theorem, then you could prove Lagrange's Theorem as a corollary of the orbit-stabilizer theorem, as Tsemo Aristide showed.
1
See there, Lagrange's theorem is not needed to prove the orbit-stabilizer lemma, which is a really straightforward result: the bijection is explicit and canonical.
– C. Falcon
1 hour ago
@C.Falcon But doesn't that proof rely on the existence of $G / text{Stab}(x)$ as a quotient group, which relies on Lagrange's Theorem?
– Noble Mushtak
53 mins ago
In all generality, $G/operatorname{Stab}(x)$ is not a group, since $operatorname{Stab}(x)$ needs not to be normal in $G$, the map constructed in the linked proof is only a bijection, not a group morphism. Recall that $G/operatorname{Stab}(x)$ is just a set of equivalence classes and this construction can be done indepently of all results.
– C. Falcon
50 mins ago
1
@C.Falcon I see. However, even in that case, you need to know $G/text{Stab}(x)$ is a partition of $G$ in order to make the equivalence relation, and proving that all of the cosets of a subgroup partition the original group is basically Lagrange's Theorem. There's no way to go from the equation they prove, which is $text{Orb}(x)=[G : text{Stab}(x)]$, to the actual theorem, $|text{Orb}(x)|cdot |text{Stab}(x)|=|G|$, without using Lagrange's Theorem somehow.
– Noble Mushtak
45 mins ago
add a comment |
Usually, Lagrange's theorem is used to prove orbit-stabilizer theorem, not the other way around. See the following proof from "Abstract Algebra: Theory and Aplications":
However, if someone could figure out how to prove orbit-stabilizer theorem without using Lagrange's Theorem, then you could prove Lagrange's Theorem as a corollary of the orbit-stabilizer theorem, as Tsemo Aristide showed.
1
See there, Lagrange's theorem is not needed to prove the orbit-stabilizer lemma, which is a really straightforward result: the bijection is explicit and canonical.
– C. Falcon
1 hour ago
@C.Falcon But doesn't that proof rely on the existence of $G / text{Stab}(x)$ as a quotient group, which relies on Lagrange's Theorem?
– Noble Mushtak
53 mins ago
In all generality, $G/operatorname{Stab}(x)$ is not a group, since $operatorname{Stab}(x)$ needs not to be normal in $G$, the map constructed in the linked proof is only a bijection, not a group morphism. Recall that $G/operatorname{Stab}(x)$ is just a set of equivalence classes and this construction can be done indepently of all results.
– C. Falcon
50 mins ago
1
@C.Falcon I see. However, even in that case, you need to know $G/text{Stab}(x)$ is a partition of $G$ in order to make the equivalence relation, and proving that all of the cosets of a subgroup partition the original group is basically Lagrange's Theorem. There's no way to go from the equation they prove, which is $text{Orb}(x)=[G : text{Stab}(x)]$, to the actual theorem, $|text{Orb}(x)|cdot |text{Stab}(x)|=|G|$, without using Lagrange's Theorem somehow.
– Noble Mushtak
45 mins ago
add a comment |
Usually, Lagrange's theorem is used to prove orbit-stabilizer theorem, not the other way around. See the following proof from "Abstract Algebra: Theory and Aplications":
However, if someone could figure out how to prove orbit-stabilizer theorem without using Lagrange's Theorem, then you could prove Lagrange's Theorem as a corollary of the orbit-stabilizer theorem, as Tsemo Aristide showed.
Usually, Lagrange's theorem is used to prove orbit-stabilizer theorem, not the other way around. See the following proof from "Abstract Algebra: Theory and Aplications":
However, if someone could figure out how to prove orbit-stabilizer theorem without using Lagrange's Theorem, then you could prove Lagrange's Theorem as a corollary of the orbit-stabilizer theorem, as Tsemo Aristide showed.
answered 1 hour ago
Noble Mushtak
14.3k1734
14.3k1734
1
See there, Lagrange's theorem is not needed to prove the orbit-stabilizer lemma, which is a really straightforward result: the bijection is explicit and canonical.
– C. Falcon
1 hour ago
@C.Falcon But doesn't that proof rely on the existence of $G / text{Stab}(x)$ as a quotient group, which relies on Lagrange's Theorem?
– Noble Mushtak
53 mins ago
In all generality, $G/operatorname{Stab}(x)$ is not a group, since $operatorname{Stab}(x)$ needs not to be normal in $G$, the map constructed in the linked proof is only a bijection, not a group morphism. Recall that $G/operatorname{Stab}(x)$ is just a set of equivalence classes and this construction can be done indepently of all results.
– C. Falcon
50 mins ago
1
@C.Falcon I see. However, even in that case, you need to know $G/text{Stab}(x)$ is a partition of $G$ in order to make the equivalence relation, and proving that all of the cosets of a subgroup partition the original group is basically Lagrange's Theorem. There's no way to go from the equation they prove, which is $text{Orb}(x)=[G : text{Stab}(x)]$, to the actual theorem, $|text{Orb}(x)|cdot |text{Stab}(x)|=|G|$, without using Lagrange's Theorem somehow.
– Noble Mushtak
45 mins ago
add a comment |
1
See there, Lagrange's theorem is not needed to prove the orbit-stabilizer lemma, which is a really straightforward result: the bijection is explicit and canonical.
– C. Falcon
1 hour ago
@C.Falcon But doesn't that proof rely on the existence of $G / text{Stab}(x)$ as a quotient group, which relies on Lagrange's Theorem?
– Noble Mushtak
53 mins ago
In all generality, $G/operatorname{Stab}(x)$ is not a group, since $operatorname{Stab}(x)$ needs not to be normal in $G$, the map constructed in the linked proof is only a bijection, not a group morphism. Recall that $G/operatorname{Stab}(x)$ is just a set of equivalence classes and this construction can be done indepently of all results.
– C. Falcon
50 mins ago
1
@C.Falcon I see. However, even in that case, you need to know $G/text{Stab}(x)$ is a partition of $G$ in order to make the equivalence relation, and proving that all of the cosets of a subgroup partition the original group is basically Lagrange's Theorem. There's no way to go from the equation they prove, which is $text{Orb}(x)=[G : text{Stab}(x)]$, to the actual theorem, $|text{Orb}(x)|cdot |text{Stab}(x)|=|G|$, without using Lagrange's Theorem somehow.
– Noble Mushtak
45 mins ago
1
1
See there, Lagrange's theorem is not needed to prove the orbit-stabilizer lemma, which is a really straightforward result: the bijection is explicit and canonical.
– C. Falcon
1 hour ago
See there, Lagrange's theorem is not needed to prove the orbit-stabilizer lemma, which is a really straightforward result: the bijection is explicit and canonical.
– C. Falcon
1 hour ago
@C.Falcon But doesn't that proof rely on the existence of $G / text{Stab}(x)$ as a quotient group, which relies on Lagrange's Theorem?
– Noble Mushtak
53 mins ago
@C.Falcon But doesn't that proof rely on the existence of $G / text{Stab}(x)$ as a quotient group, which relies on Lagrange's Theorem?
– Noble Mushtak
53 mins ago
In all generality, $G/operatorname{Stab}(x)$ is not a group, since $operatorname{Stab}(x)$ needs not to be normal in $G$, the map constructed in the linked proof is only a bijection, not a group morphism. Recall that $G/operatorname{Stab}(x)$ is just a set of equivalence classes and this construction can be done indepently of all results.
– C. Falcon
50 mins ago
In all generality, $G/operatorname{Stab}(x)$ is not a group, since $operatorname{Stab}(x)$ needs not to be normal in $G$, the map constructed in the linked proof is only a bijection, not a group morphism. Recall that $G/operatorname{Stab}(x)$ is just a set of equivalence classes and this construction can be done indepently of all results.
– C. Falcon
50 mins ago
1
1
@C.Falcon I see. However, even in that case, you need to know $G/text{Stab}(x)$ is a partition of $G$ in order to make the equivalence relation, and proving that all of the cosets of a subgroup partition the original group is basically Lagrange's Theorem. There's no way to go from the equation they prove, which is $text{Orb}(x)=[G : text{Stab}(x)]$, to the actual theorem, $|text{Orb}(x)|cdot |text{Stab}(x)|=|G|$, without using Lagrange's Theorem somehow.
– Noble Mushtak
45 mins ago
@C.Falcon I see. However, even in that case, you need to know $G/text{Stab}(x)$ is a partition of $G$ in order to make the equivalence relation, and proving that all of the cosets of a subgroup partition the original group is basically Lagrange's Theorem. There's no way to go from the equation they prove, which is $text{Orb}(x)=[G : text{Stab}(x)]$, to the actual theorem, $|text{Orb}(x)|cdot |text{Stab}(x)|=|G|$, without using Lagrange's Theorem somehow.
– Noble Mushtak
45 mins ago
add a comment |
J. W. Tanner is a new contributor. Be nice, and check out our Code of Conduct.
J. W. Tanner is a new contributor. Be nice, and check out our Code of Conduct.
J. W. Tanner is a new contributor. Be nice, and check out our Code of Conduct.
J. W. Tanner is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3056919%2fwhat-is-the-relationship-between-the-orbit-stabilizer-theorem-and-lagranges-the%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown