java.lang.UnsupportedOperationExceptionfieldIndex on a Row without schema is undefined: Exception on...











up vote
1
down vote

favorite












The following code is throwing an Exception Caused by: java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined. This is happening when a on a dataframe that has been returned after a groupByKey and flatMap invocation on a dataframe using ExpressionEncoder, groupedByKey and a flatMap is invoked.



Logical flow:
originalDf->groupByKey->flatMap->groupByKey->flatMap->show



   import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{ IntegerType, StructField, StructType}

import scala.collection.mutable.ListBuffer



object Test {

def main(args: Array[String]): Unit = {

val values = List(List("1", "One") ,List("1", "Two") ,List("2", "Three"),List("2","4")).map(x =>(x(0), x(1)))
val session = SparkSession.builder.config("spark.master", "local").getOrCreate
import session.implicits._
val dataFrame = values.toDF


dataFrame.show()
dataFrame.printSchema()

val newSchema = StructType(dataFrame.schema.fields
++ Array(
StructField("Count", IntegerType, false)
)
)

val expr = RowEncoder.apply(newSchema)

val tranform = dataFrame.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq

val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1

}

for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr)

tranform.show

val newSchema1 = StructType(tranform.schema.fields
++ Array(
StructField("Count1", IntegerType, false)
)
)
val expr1 = RowEncoder.apply(newSchema1)
val tranform2 = tranform.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq

val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1

}

for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr1)

tranform2.show
}
}


Following is the stacktrace



18/11/21 19:39:03 WARN TaskSetManager: Lost task 144.0 in stage 11.0 (TID 400, localhost, executor driver): java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined.
at org.apache.spark.sql.Row$class.fieldIndex(Row.scala:342)
at org.apache.spark.sql.catalyst.expressions.GenericRow.fieldIndex(rows.scala:166)
at org.apache.spark.sql.Row$class.getAs(Row.scala:333)
at org.apache.spark.sql.catalyst.expressions.GenericRow.getAs(rows.scala:166)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:300)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:298)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:149)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)


How to fix this code?










share|improve this question
























  • Please edit the question and include the traceback. Also consider adding a Minimal, Complete, and Verifiable example (you can check How to make good reproducible Apache Spark Dataframe examples) for an inspiration.
    – user6910411
    Nov 20 at 16:06






  • 1




    @user6910411: added the stacktrace. Will be difficult to put the reproducible code, as the flow is integrated in a framework over multiple libraries. But can answer whatever details would be required
    – Bay Max
    Nov 20 at 16:28










  • Can you post the case class definitions for the two datasets? Did you add the naturalRank field to the second?
    – sramalingam24
    Nov 20 at 18:37










  • Also you can just do row => row.ticker if the schema is specified correctly
    – sramalingam24
    Nov 20 at 19:23






  • 1




    @user6910411 I have edited the question and put a similar code that throws the given Exception and has the same semantic flow.
    – Bay Max
    Nov 21 at 14:18















up vote
1
down vote

favorite












The following code is throwing an Exception Caused by: java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined. This is happening when a on a dataframe that has been returned after a groupByKey and flatMap invocation on a dataframe using ExpressionEncoder, groupedByKey and a flatMap is invoked.



Logical flow:
originalDf->groupByKey->flatMap->groupByKey->flatMap->show



   import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{ IntegerType, StructField, StructType}

import scala.collection.mutable.ListBuffer



object Test {

def main(args: Array[String]): Unit = {

val values = List(List("1", "One") ,List("1", "Two") ,List("2", "Three"),List("2","4")).map(x =>(x(0), x(1)))
val session = SparkSession.builder.config("spark.master", "local").getOrCreate
import session.implicits._
val dataFrame = values.toDF


dataFrame.show()
dataFrame.printSchema()

val newSchema = StructType(dataFrame.schema.fields
++ Array(
StructField("Count", IntegerType, false)
)
)

val expr = RowEncoder.apply(newSchema)

val tranform = dataFrame.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq

val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1

}

for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr)

tranform.show

val newSchema1 = StructType(tranform.schema.fields
++ Array(
StructField("Count1", IntegerType, false)
)
)
val expr1 = RowEncoder.apply(newSchema1)
val tranform2 = tranform.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq

val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1

}

for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr1)

tranform2.show
}
}


Following is the stacktrace



18/11/21 19:39:03 WARN TaskSetManager: Lost task 144.0 in stage 11.0 (TID 400, localhost, executor driver): java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined.
at org.apache.spark.sql.Row$class.fieldIndex(Row.scala:342)
at org.apache.spark.sql.catalyst.expressions.GenericRow.fieldIndex(rows.scala:166)
at org.apache.spark.sql.Row$class.getAs(Row.scala:333)
at org.apache.spark.sql.catalyst.expressions.GenericRow.getAs(rows.scala:166)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:300)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:298)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:149)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)


How to fix this code?










share|improve this question
























  • Please edit the question and include the traceback. Also consider adding a Minimal, Complete, and Verifiable example (you can check How to make good reproducible Apache Spark Dataframe examples) for an inspiration.
    – user6910411
    Nov 20 at 16:06






  • 1




    @user6910411: added the stacktrace. Will be difficult to put the reproducible code, as the flow is integrated in a framework over multiple libraries. But can answer whatever details would be required
    – Bay Max
    Nov 20 at 16:28










  • Can you post the case class definitions for the two datasets? Did you add the naturalRank field to the second?
    – sramalingam24
    Nov 20 at 18:37










  • Also you can just do row => row.ticker if the schema is specified correctly
    – sramalingam24
    Nov 20 at 19:23






  • 1




    @user6910411 I have edited the question and put a similar code that throws the given Exception and has the same semantic flow.
    – Bay Max
    Nov 21 at 14:18













up vote
1
down vote

favorite









up vote
1
down vote

favorite











The following code is throwing an Exception Caused by: java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined. This is happening when a on a dataframe that has been returned after a groupByKey and flatMap invocation on a dataframe using ExpressionEncoder, groupedByKey and a flatMap is invoked.



Logical flow:
originalDf->groupByKey->flatMap->groupByKey->flatMap->show



   import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{ IntegerType, StructField, StructType}

import scala.collection.mutable.ListBuffer



object Test {

def main(args: Array[String]): Unit = {

val values = List(List("1", "One") ,List("1", "Two") ,List("2", "Three"),List("2","4")).map(x =>(x(0), x(1)))
val session = SparkSession.builder.config("spark.master", "local").getOrCreate
import session.implicits._
val dataFrame = values.toDF


dataFrame.show()
dataFrame.printSchema()

val newSchema = StructType(dataFrame.schema.fields
++ Array(
StructField("Count", IntegerType, false)
)
)

val expr = RowEncoder.apply(newSchema)

val tranform = dataFrame.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq

val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1

}

for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr)

tranform.show

val newSchema1 = StructType(tranform.schema.fields
++ Array(
StructField("Count1", IntegerType, false)
)
)
val expr1 = RowEncoder.apply(newSchema1)
val tranform2 = tranform.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq

val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1

}

for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr1)

tranform2.show
}
}


Following is the stacktrace



18/11/21 19:39:03 WARN TaskSetManager: Lost task 144.0 in stage 11.0 (TID 400, localhost, executor driver): java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined.
at org.apache.spark.sql.Row$class.fieldIndex(Row.scala:342)
at org.apache.spark.sql.catalyst.expressions.GenericRow.fieldIndex(rows.scala:166)
at org.apache.spark.sql.Row$class.getAs(Row.scala:333)
at org.apache.spark.sql.catalyst.expressions.GenericRow.getAs(rows.scala:166)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:300)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:298)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:149)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)


How to fix this code?










share|improve this question















The following code is throwing an Exception Caused by: java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined. This is happening when a on a dataframe that has been returned after a groupByKey and flatMap invocation on a dataframe using ExpressionEncoder, groupedByKey and a flatMap is invoked.



Logical flow:
originalDf->groupByKey->flatMap->groupByKey->flatMap->show



   import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.types.{ IntegerType, StructField, StructType}

import scala.collection.mutable.ListBuffer



object Test {

def main(args: Array[String]): Unit = {

val values = List(List("1", "One") ,List("1", "Two") ,List("2", "Three"),List("2","4")).map(x =>(x(0), x(1)))
val session = SparkSession.builder.config("spark.master", "local").getOrCreate
import session.implicits._
val dataFrame = values.toDF


dataFrame.show()
dataFrame.printSchema()

val newSchema = StructType(dataFrame.schema.fields
++ Array(
StructField("Count", IntegerType, false)
)
)

val expr = RowEncoder.apply(newSchema)

val tranform = dataFrame.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq

val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1

}

for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr)

tranform.show

val newSchema1 = StructType(tranform.schema.fields
++ Array(
StructField("Count1", IntegerType, false)
)
)
val expr1 = RowEncoder.apply(newSchema1)
val tranform2 = tranform.groupByKey(row => row.getAs[String]("_1")).flatMapGroups((key, inputItr) => {
val inputSeq = inputItr.toSeq

val length = inputSeq.size
var listBuff = new ListBuffer[Row]()
var counter : Int= 0
for(i <- 0 until(length))
{
counter+=1

}

for(i <- 0 until length ) {
var x = inputSeq(i)
listBuff += Row.fromSeq(x.toSeq ++ Array[Int](counter))
}
listBuff.iterator
})(expr1)

tranform2.show
}
}


Following is the stacktrace



18/11/21 19:39:03 WARN TaskSetManager: Lost task 144.0 in stage 11.0 (TID 400, localhost, executor driver): java.lang.UnsupportedOperationException: fieldIndex on a Row without schema is undefined.
at org.apache.spark.sql.Row$class.fieldIndex(Row.scala:342)
at org.apache.spark.sql.catalyst.expressions.GenericRow.fieldIndex(rows.scala:166)
at org.apache.spark.sql.Row$class.getAs(Row.scala:333)
at org.apache.spark.sql.catalyst.expressions.GenericRow.getAs(rows.scala:166)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at com.quantuting.sparkutils.main.Test$$anonfun$4.apply(Test.scala:59)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:300)
at org.apache.spark.sql.execution.AppendColumnsWithObjectExec$$anonfun$9$$anonfun$apply$3.apply(objects.scala:298)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:149)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)


How to fix this code?







scala apache-spark






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 21 at 14:24

























asked Nov 20 at 16:03









Bay Max

1158




1158












  • Please edit the question and include the traceback. Also consider adding a Minimal, Complete, and Verifiable example (you can check How to make good reproducible Apache Spark Dataframe examples) for an inspiration.
    – user6910411
    Nov 20 at 16:06






  • 1




    @user6910411: added the stacktrace. Will be difficult to put the reproducible code, as the flow is integrated in a framework over multiple libraries. But can answer whatever details would be required
    – Bay Max
    Nov 20 at 16:28










  • Can you post the case class definitions for the two datasets? Did you add the naturalRank field to the second?
    – sramalingam24
    Nov 20 at 18:37










  • Also you can just do row => row.ticker if the schema is specified correctly
    – sramalingam24
    Nov 20 at 19:23






  • 1




    @user6910411 I have edited the question and put a similar code that throws the given Exception and has the same semantic flow.
    – Bay Max
    Nov 21 at 14:18


















  • Please edit the question and include the traceback. Also consider adding a Minimal, Complete, and Verifiable example (you can check How to make good reproducible Apache Spark Dataframe examples) for an inspiration.
    – user6910411
    Nov 20 at 16:06






  • 1




    @user6910411: added the stacktrace. Will be difficult to put the reproducible code, as the flow is integrated in a framework over multiple libraries. But can answer whatever details would be required
    – Bay Max
    Nov 20 at 16:28










  • Can you post the case class definitions for the two datasets? Did you add the naturalRank field to the second?
    – sramalingam24
    Nov 20 at 18:37










  • Also you can just do row => row.ticker if the schema is specified correctly
    – sramalingam24
    Nov 20 at 19:23






  • 1




    @user6910411 I have edited the question and put a similar code that throws the given Exception and has the same semantic flow.
    – Bay Max
    Nov 21 at 14:18
















Please edit the question and include the traceback. Also consider adding a Minimal, Complete, and Verifiable example (you can check How to make good reproducible Apache Spark Dataframe examples) for an inspiration.
– user6910411
Nov 20 at 16:06




Please edit the question and include the traceback. Also consider adding a Minimal, Complete, and Verifiable example (you can check How to make good reproducible Apache Spark Dataframe examples) for an inspiration.
– user6910411
Nov 20 at 16:06




1




1




@user6910411: added the stacktrace. Will be difficult to put the reproducible code, as the flow is integrated in a framework over multiple libraries. But can answer whatever details would be required
– Bay Max
Nov 20 at 16:28




@user6910411: added the stacktrace. Will be difficult to put the reproducible code, as the flow is integrated in a framework over multiple libraries. But can answer whatever details would be required
– Bay Max
Nov 20 at 16:28












Can you post the case class definitions for the two datasets? Did you add the naturalRank field to the second?
– sramalingam24
Nov 20 at 18:37




Can you post the case class definitions for the two datasets? Did you add the naturalRank field to the second?
– sramalingam24
Nov 20 at 18:37












Also you can just do row => row.ticker if the schema is specified correctly
– sramalingam24
Nov 20 at 19:23




Also you can just do row => row.ticker if the schema is specified correctly
– sramalingam24
Nov 20 at 19:23




1




1




@user6910411 I have edited the question and put a similar code that throws the given Exception and has the same semantic flow.
– Bay Max
Nov 21 at 14:18




@user6910411 I have edited the question and put a similar code that throws the given Exception and has the same semantic flow.
– Bay Max
Nov 21 at 14:18

















active

oldest

votes











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53396949%2fjava-lang-unsupportedoperationexceptionfieldindex-on-a-row-without-schema-is-und%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53396949%2fjava-lang-unsupportedoperationexceptionfieldindex-on-a-row-without-schema-is-und%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

404 Error Contact Form 7 ajax form submitting

How to know if a Active Directory user can login interactively

Refactoring coordinates for Minecraft Pi buildings written in Python