How to save parameters on local server when using remote grpc session on Tensorflow?












0















I first start a grpc server in server A.



server = tf.train.Server.create_local_server()
server.join()


Then I execute the training process on server B:



sess = tf.Session("grpc://172.31.222.83:34217")
sess.run(init)

for i in range(1000):
_, l = sess.run([train_op, loss], feed)

saver.save(sess, './ckpts/model')


When the training process is finished, I find the checkpoints have saved on server A. But I want server A just used as computational node. That is to say, I want the parameters are all saved on server B, server A is used only to compute. How can I achieve this?










share|improve this question



























    0















    I first start a grpc server in server A.



    server = tf.train.Server.create_local_server()
    server.join()


    Then I execute the training process on server B:



    sess = tf.Session("grpc://172.31.222.83:34217")
    sess.run(init)

    for i in range(1000):
    _, l = sess.run([train_op, loss], feed)

    saver.save(sess, './ckpts/model')


    When the training process is finished, I find the checkpoints have saved on server A. But I want server A just used as computational node. That is to say, I want the parameters are all saved on server B, server A is used only to compute. How can I achieve this?










    share|improve this question

























      0












      0








      0








      I first start a grpc server in server A.



      server = tf.train.Server.create_local_server()
      server.join()


      Then I execute the training process on server B:



      sess = tf.Session("grpc://172.31.222.83:34217")
      sess.run(init)

      for i in range(1000):
      _, l = sess.run([train_op, loss], feed)

      saver.save(sess, './ckpts/model')


      When the training process is finished, I find the checkpoints have saved on server A. But I want server A just used as computational node. That is to say, I want the parameters are all saved on server B, server A is used only to compute. How can I achieve this?










      share|improve this question














      I first start a grpc server in server A.



      server = tf.train.Server.create_local_server()
      server.join()


      Then I execute the training process on server B:



      sess = tf.Session("grpc://172.31.222.83:34217")
      sess.run(init)

      for i in range(1000):
      _, l = sess.run([train_op, loss], feed)

      saver.save(sess, './ckpts/model')


      When the training process is finished, I find the checkpoints have saved on server A. But I want server A just used as computational node. That is to say, I want the parameters are all saved on server B, server A is used only to compute. How can I achieve this?







      tensorflow






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 24 '18 at 13:15









      alanalan

      11




      11
























          1 Answer
          1






          active

          oldest

          votes


















          0














          Here is one possibility.



          service TrainerService {
          rpc Train(TrainRequest) returns (TrainResponse);
          }

          func (s *trainerServer) Train(..., req *pb.TrainRequest) (resp *pb.TrainResponse) {
          return &pb.TrainResponse{tensorTrainer.Train(req.data)}
          }


          Here is another



          service TrainerService {
          rpc Train(TrainRequest) returns (TrainResponse);
          rpc Results(ResultsRequest) returns (ResultsResponse);
          }

          func (s *trainerServer) Train(..., req *pb.TrainRequest) (resp *pb.TrainResponse) {
          session, err := NewTrainingSession(req.data)
          if err != nil { panic() }
          go session.Train()
          return &pb.TrainResponse{session.id}
          }

          func (s *trainerServer) Results(..., req *pb.ResultsRequest) (resp *pb.ResultsResponse) {
          results, err := GetResults(req.id)
          if err != nil { panic() }
          return &pb.ResultsResponse{results}
          }


          The client can call Train and poll Results until success. Perhaps TrainResponse returns an estimate.






          share|improve this answer























            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53458522%2fhow-to-save-parameters-on-local-server-when-using-remote-grpc-session-on-tensorf%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0














            Here is one possibility.



            service TrainerService {
            rpc Train(TrainRequest) returns (TrainResponse);
            }

            func (s *trainerServer) Train(..., req *pb.TrainRequest) (resp *pb.TrainResponse) {
            return &pb.TrainResponse{tensorTrainer.Train(req.data)}
            }


            Here is another



            service TrainerService {
            rpc Train(TrainRequest) returns (TrainResponse);
            rpc Results(ResultsRequest) returns (ResultsResponse);
            }

            func (s *trainerServer) Train(..., req *pb.TrainRequest) (resp *pb.TrainResponse) {
            session, err := NewTrainingSession(req.data)
            if err != nil { panic() }
            go session.Train()
            return &pb.TrainResponse{session.id}
            }

            func (s *trainerServer) Results(..., req *pb.ResultsRequest) (resp *pb.ResultsResponse) {
            results, err := GetResults(req.id)
            if err != nil { panic() }
            return &pb.ResultsResponse{results}
            }


            The client can call Train and poll Results until success. Perhaps TrainResponse returns an estimate.






            share|improve this answer




























              0














              Here is one possibility.



              service TrainerService {
              rpc Train(TrainRequest) returns (TrainResponse);
              }

              func (s *trainerServer) Train(..., req *pb.TrainRequest) (resp *pb.TrainResponse) {
              return &pb.TrainResponse{tensorTrainer.Train(req.data)}
              }


              Here is another



              service TrainerService {
              rpc Train(TrainRequest) returns (TrainResponse);
              rpc Results(ResultsRequest) returns (ResultsResponse);
              }

              func (s *trainerServer) Train(..., req *pb.TrainRequest) (resp *pb.TrainResponse) {
              session, err := NewTrainingSession(req.data)
              if err != nil { panic() }
              go session.Train()
              return &pb.TrainResponse{session.id}
              }

              func (s *trainerServer) Results(..., req *pb.ResultsRequest) (resp *pb.ResultsResponse) {
              results, err := GetResults(req.id)
              if err != nil { panic() }
              return &pb.ResultsResponse{results}
              }


              The client can call Train and poll Results until success. Perhaps TrainResponse returns an estimate.






              share|improve this answer


























                0












                0








                0







                Here is one possibility.



                service TrainerService {
                rpc Train(TrainRequest) returns (TrainResponse);
                }

                func (s *trainerServer) Train(..., req *pb.TrainRequest) (resp *pb.TrainResponse) {
                return &pb.TrainResponse{tensorTrainer.Train(req.data)}
                }


                Here is another



                service TrainerService {
                rpc Train(TrainRequest) returns (TrainResponse);
                rpc Results(ResultsRequest) returns (ResultsResponse);
                }

                func (s *trainerServer) Train(..., req *pb.TrainRequest) (resp *pb.TrainResponse) {
                session, err := NewTrainingSession(req.data)
                if err != nil { panic() }
                go session.Train()
                return &pb.TrainResponse{session.id}
                }

                func (s *trainerServer) Results(..., req *pb.ResultsRequest) (resp *pb.ResultsResponse) {
                results, err := GetResults(req.id)
                if err != nil { panic() }
                return &pb.ResultsResponse{results}
                }


                The client can call Train and poll Results until success. Perhaps TrainResponse returns an estimate.






                share|improve this answer













                Here is one possibility.



                service TrainerService {
                rpc Train(TrainRequest) returns (TrainResponse);
                }

                func (s *trainerServer) Train(..., req *pb.TrainRequest) (resp *pb.TrainResponse) {
                return &pb.TrainResponse{tensorTrainer.Train(req.data)}
                }


                Here is another



                service TrainerService {
                rpc Train(TrainRequest) returns (TrainResponse);
                rpc Results(ResultsRequest) returns (ResultsResponse);
                }

                func (s *trainerServer) Train(..., req *pb.TrainRequest) (resp *pb.TrainResponse) {
                session, err := NewTrainingSession(req.data)
                if err != nil { panic() }
                go session.Train()
                return &pb.TrainResponse{session.id}
                }

                func (s *trainerServer) Results(..., req *pb.ResultsRequest) (resp *pb.ResultsResponse) {
                results, err := GetResults(req.id)
                if err != nil { panic() }
                return &pb.ResultsResponse{results}
                }


                The client can call Train and poll Results until success. Perhaps TrainResponse returns an estimate.







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Nov 24 '18 at 13:27









                user2882597user2882597

                389211




                389211
































                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53458522%2fhow-to-save-parameters-on-local-server-when-using-remote-grpc-session-on-tensorf%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    404 Error Contact Form 7 ajax form submitting

                    How to know if a Active Directory user can login interactively

                    Refactoring coordinates for Minecraft Pi buildings written in Python