How to plot two histograms together in R?
I am using R and I have two data frames: carrots and cucumbers. Each data frame has a single numeric column which lists the length of all measured carrots (total: 100k carrots) and cucumbers (total: 50k cucumbers).
I wish to plot two histogram - carrot length and cucumbers lengths - on the same plot. They overlap, so I guess I also need some transparency. I also need to use relative frequencies not absolute numbers since the number of instances in each group is different.
something like this would be nice but I don't understand how to create it from my two tables:
r plot histogram
add a comment |
I am using R and I have two data frames: carrots and cucumbers. Each data frame has a single numeric column which lists the length of all measured carrots (total: 100k carrots) and cucumbers (total: 50k cucumbers).
I wish to plot two histogram - carrot length and cucumbers lengths - on the same plot. They overlap, so I guess I also need some transparency. I also need to use relative frequencies not absolute numbers since the number of instances in each group is different.
something like this would be nice but I don't understand how to create it from my two tables:
r plot histogram
Btw, which software are you planning to use? For open source, I'd recommend gnuplot.info [gnuplot]. In its documentation, I believe you will find certain technique and sample scripts to do what you want.
– noel aye
Aug 22 '10 at 14:21
1
I'm using R as the tag suggests (edited post to make this clear)
– David B
Aug 22 '10 at 14:36
1
someone posted some code snippet to do it in this thread: stackoverflow.com/questions/3485456/…
– nico
Aug 22 '10 at 16:11
add a comment |
I am using R and I have two data frames: carrots and cucumbers. Each data frame has a single numeric column which lists the length of all measured carrots (total: 100k carrots) and cucumbers (total: 50k cucumbers).
I wish to plot two histogram - carrot length and cucumbers lengths - on the same plot. They overlap, so I guess I also need some transparency. I also need to use relative frequencies not absolute numbers since the number of instances in each group is different.
something like this would be nice but I don't understand how to create it from my two tables:
r plot histogram
I am using R and I have two data frames: carrots and cucumbers. Each data frame has a single numeric column which lists the length of all measured carrots (total: 100k carrots) and cucumbers (total: 50k cucumbers).
I wish to plot two histogram - carrot length and cucumbers lengths - on the same plot. They overlap, so I guess I also need some transparency. I also need to use relative frequencies not absolute numbers since the number of instances in each group is different.
something like this would be nice but I don't understand how to create it from my two tables:
r plot histogram
r plot histogram
edited Jan 9 '14 at 17:32
Lenna
1,069720
1,069720
asked Aug 22 '10 at 13:54
David BDavid B
11.6k40113171
11.6k40113171
Btw, which software are you planning to use? For open source, I'd recommend gnuplot.info [gnuplot]. In its documentation, I believe you will find certain technique and sample scripts to do what you want.
– noel aye
Aug 22 '10 at 14:21
1
I'm using R as the tag suggests (edited post to make this clear)
– David B
Aug 22 '10 at 14:36
1
someone posted some code snippet to do it in this thread: stackoverflow.com/questions/3485456/…
– nico
Aug 22 '10 at 16:11
add a comment |
Btw, which software are you planning to use? For open source, I'd recommend gnuplot.info [gnuplot]. In its documentation, I believe you will find certain technique and sample scripts to do what you want.
– noel aye
Aug 22 '10 at 14:21
1
I'm using R as the tag suggests (edited post to make this clear)
– David B
Aug 22 '10 at 14:36
1
someone posted some code snippet to do it in this thread: stackoverflow.com/questions/3485456/…
– nico
Aug 22 '10 at 16:11
Btw, which software are you planning to use? For open source, I'd recommend gnuplot.info [gnuplot]. In its documentation, I believe you will find certain technique and sample scripts to do what you want.
– noel aye
Aug 22 '10 at 14:21
Btw, which software are you planning to use? For open source, I'd recommend gnuplot.info [gnuplot]. In its documentation, I believe you will find certain technique and sample scripts to do what you want.
– noel aye
Aug 22 '10 at 14:21
1
1
I'm using R as the tag suggests (edited post to make this clear)
– David B
Aug 22 '10 at 14:36
I'm using R as the tag suggests (edited post to make this clear)
– David B
Aug 22 '10 at 14:36
1
1
someone posted some code snippet to do it in this thread: stackoverflow.com/questions/3485456/…
– nico
Aug 22 '10 at 16:11
someone posted some code snippet to do it in this thread: stackoverflow.com/questions/3485456/…
– nico
Aug 22 '10 at 16:11
add a comment |
8 Answers
8
active
oldest
votes
That image you linked to was for density curves, not histograms.
If you've been reading on ggplot then maybe the only thing you're missing is combining your two data frames into one long one.
So, let's start with something like what you have, two separate sets of data and combine them.
carrots <- data.frame(length = rnorm(100000, 6, 2))
cukes <- data.frame(length = rnorm(50000, 7, 2.5))
# Now, combine your two dataframes into one.
# First make a new column in each that will be
# a variable to identify where they came from later.
carrots$veg <- 'carrot'
cukes$veg <- 'cuke'
# and combine into your new data frame vegLengths
vegLengths <- rbind(carrots, cukes)
After that, which is unnecessary if your data is in long formal already, you only need one line to make your plot.
ggplot(vegLengths, aes(length, fill = veg)) + geom_density(alpha = 0.2)
Now, if you really did want histograms the following will work. Note that you must change position from the default "stack" argument. You might miss that if you don't really have an idea of what your data should look like. A higher alpha looks better there. Also note that I made it density histograms. It's easy to remove the y = ..density..
to get it back to counts.
ggplot(vegLengths, aes(length, fill = veg)) +
geom_histogram(alpha = 0.5, aes(y = ..density..), position = 'identity')
8
If you'd like to stay with histograms, useggplot(vegLengths, aes(length, fill = veg)) + geom_bar(pos="dodge")
. This will make interlaced histograms, like in MATLAB.
– mbq
Aug 22 '10 at 16:07
1
Thx for the answer! The 'position="identity"' part is actually important as otherwise the bars are stacked which is misleading when combined with a density that by default seems to be "identity", i.e., overlayed as opposed to stacked.
– Shadow
Jun 8 '15 at 11:56
add a comment |
Here is an even simpler solution using base graphics and alpha-blending (which does not work on all graphics devices):
set.seed(42)
p1 <- hist(rnorm(500,4)) # centered at 4
p2 <- hist(rnorm(500,6)) # centered at 6
plot( p1, col=rgb(0,0,1,1/4), xlim=c(0,10)) # first histogram
plot( p2, col=rgb(1,0,0,1/4), xlim=c(0,10), add=T) # second
The key is that the colours are semi-transparent.
Edit, more than two years later: As this just got an upvote, I figure I may as well add a visual of what the code produces as alpha-blending is so darn useful:
5
+1 thank you all, can this be converted to a smoother gistogram (like had.co.nz/ggplot2/graphics/55078149a733dd1a0b42a57faf847036.png)?
– David B
Aug 25 '10 at 9:48
3
Why did you separate out theplot
commands? You can put all of those options into thehist
commands and just two it in the two lines.
– John
Apr 18 '14 at 0:36
@John How would you do it?
– SmallChess
Sep 16 '15 at 4:12
Put the options in theplot
command directly into the hist command as I said. Posting the code isn't what comments are for.
– John
Sep 16 '15 at 6:11
add a comment |
Here's a function I wrote that uses pseudo-transparency to represent overlapping histograms
plotOverlappingHist <- function(a, b, colors=c("white","gray20","gray50"),
breaks=NULL, xlim=NULL, ylim=NULL){
ahist=NULL
bhist=NULL
if(!(is.null(breaks))){
ahist=hist(a,breaks=breaks,plot=F)
bhist=hist(b,breaks=breaks,plot=F)
} else {
ahist=hist(a,plot=F)
bhist=hist(b,plot=F)
dist = ahist$breaks[2]-ahist$breaks[1]
breaks = seq(min(ahist$breaks,bhist$breaks),max(ahist$breaks,bhist$breaks),dist)
ahist=hist(a,breaks=breaks,plot=F)
bhist=hist(b,breaks=breaks,plot=F)
}
if(is.null(xlim)){
xlim = c(min(ahist$breaks,bhist$breaks),max(ahist$breaks,bhist$breaks))
}
if(is.null(ylim)){
ylim = c(0,max(ahist$counts,bhist$counts))
}
overlap = ahist
for(i in 1:length(overlap$counts)){
if(ahist$counts[i] > 0 & bhist$counts[i] > 0){
overlap$counts[i] = min(ahist$counts[i],bhist$counts[i])
} else {
overlap$counts[i] = 0
}
}
plot(ahist, xlim=xlim, ylim=ylim, col=colors[1])
plot(bhist, xlim=xlim, ylim=ylim, col=colors[2], add=T)
plot(overlap, xlim=xlim, ylim=ylim, col=colors[3], add=T)
}
Here's another way to do it using R's support for transparent colors
a=rnorm(1000, 3, 1)
b=rnorm(1000, 6, 1)
hist(a, xlim=c(0,10), col="red")
hist(b, add=T, col=rgb(0, 1, 0, 0.5) )
The results end up looking something like this:
+1 for an option available on all graphics devices (e.g.postscript
)
– Lenna
Jan 9 '14 at 17:32
add a comment |
Already beautiful answers are there, but I thought of adding this. Looks good to me.
(Copied random numbers from @Dirk). library(scales)
is needed`
set.seed(42)
hist(rnorm(500,4),xlim=c(0,10),col='skyblue',border=F)
hist(rnorm(500,6),add=T,col=scales::alpha('red',.5),border=F)
The result is...
Update: This overlapping function may also be useful to some.
hist0 <- function(...,col='skyblue',border=T) hist(...,col=col,border=border)
I feel result from hist0
is prettier to look than hist
hist2 <- function(var1, var2,name1='',name2='',
breaks = min(max(length(var1), length(var2)),20),
main0 = "", alpha0 = 0.5,grey=0,border=F,...) {
library(scales)
colh <- c(rgb(0, 1, 0, alpha0), rgb(1, 0, 0, alpha0))
if(grey) colh <- c(alpha(grey(0.1,alpha0)), alpha(grey(0.9,alpha0)))
max0 = max(var1, var2)
min0 = min(var1, var2)
den1_max <- hist(var1, breaks = breaks, plot = F)$density %>% max
den2_max <- hist(var2, breaks = breaks, plot = F)$density %>% max
den_max <- max(den2_max, den1_max)*1.2
var1 %>% hist0(xlim = c(min0 , max0) , breaks = breaks,
freq = F, col = colh[1], ylim = c(0, den_max), main = main0,border=border,...)
var2 %>% hist0(xlim = c(min0 , max0), breaks = breaks,
freq = F, col = colh[2], ylim = c(0, den_max), add = T,border=border,...)
legend(min0,den_max, legend = c(
ifelse(nchar(name1)==0,substitute(var1) %>% deparse,name1),
ifelse(nchar(name2)==0,substitute(var2) %>% deparse,name2),
"Overlap"), fill = c('white','white', colh[1]), bty = "n", cex=1,ncol=3)
legend(min0,den_max, legend = c(
ifelse(nchar(name1)==0,substitute(var1) %>% deparse,name1),
ifelse(nchar(name2)==0,substitute(var2) %>% deparse,name2),
"Overlap"), fill = c(colh, colh[2]), bty = "n", cex=1,ncol=3) }
The result of
par(mar=c(3, 4, 3, 2) + 0.1)
set.seed(100)
hist2(rnorm(10000,2),rnorm(10000,3),breaks = 50)
is
add a comment |
Here is an example of how you can do it in "classic" R graphics:
## generate some random data
carrotLengths <- rnorm(1000,15,5)
cucumberLengths <- rnorm(200,20,7)
## calculate the histograms - don't plot yet
histCarrot <- hist(carrotLengths,plot = FALSE)
histCucumber <- hist(cucumberLengths,plot = FALSE)
## calculate the range of the graph
xlim <- range(histCucumber$breaks,histCarrot$breaks)
ylim <- range(0,histCucumber$density,
histCarrot$density)
## plot the first graph
plot(histCarrot,xlim = xlim, ylim = ylim,
col = rgb(1,0,0,0.4),xlab = 'Lengths',
freq = FALSE, ## relative, not absolute frequency
main = 'Distribution of carrots and cucumbers')
## plot the second graph on top of this
opar <- par(new = FALSE)
plot(histCucumber,xlim = xlim, ylim = ylim,
xaxt = 'n', yaxt = 'n', ## don't add axes
col = rgb(0,0,1,0.4), add = TRUE,
freq = FALSE) ## relative, not absolute frequency
## add a legend in the corner
legend('topleft',c('Carrots','Cucumbers'),
fill = rgb(1:0,0,0:1,0.4), bty = 'n',
border = NA)
par(opar)
The only issue with this is that it looks much better if the histogram breaks are aligned, which may have to be done manually (in the arguments passed to hist
).
Very nice. It also reminded me of that one stackoverflow.com/questions/3485456/…
– George Dontas
Aug 22 '10 at 16:11
2
hey... I usually am the one who puts up the base R version! :) You forgot to assign opar.
– John
Aug 22 '10 at 16:20
To @gd047: thanks for the link - it looks useful. To @John, thanks for pointing out the bug - I think the "o" was lost in the copy-paste.
– nullglob
Aug 22 '10 at 18:37
Upping this because this answer is the only one (besides those inggplot
) which directly accounts for if your two histograms have substantially different sample sizes.
– MichaelChirico
Jan 27 '15 at 1:42
I like this method, note that you can synchronize breaks by defining them with seq(). For example:breaks=seq(min(data$some_property), max(data$some_property), by=(max_prop - min_prop)/20)
– Deruijter
Sep 2 '16 at 3:48
add a comment |
Here's the version like the ggplot2 one I gave only in base R. I copied some from @nullglob.
generate the data
carrots <- rnorm(100000,5,2)
cukes <- rnorm(50000,7,2.5)
You don't need to put it into a data frame like with ggplot2. The drawback of this method is that you have to write out a lot more of the details of the plot. The advantage is that you have control over more details of the plot.
## calculate the density - don't plot yet
densCarrot <- density(carrots)
densCuke <- density(cukes)
## calculate the range of the graph
xlim <- range(densCuke$x,densCarrot$x)
ylim <- range(0,densCuke$y, densCarrot$y)
#pick the colours
carrotCol <- rgb(1,0,0,0.2)
cukeCol <- rgb(0,0,1,0.2)
## plot the carrots and set up most of the plot parameters
plot(densCarrot, xlim = xlim, ylim = ylim, xlab = 'Lengths',
main = 'Distribution of carrots and cucumbers',
panel.first = grid())
#put our density plots in
polygon(densCarrot, density = -1, col = carrotCol)
polygon(densCuke, density = -1, col = cukeCol)
## add a legend in the corner
legend('topleft',c('Carrots','Cucumbers'),
fill = c(carrotCol, cukeCol), bty = 'n',
border = NA)
add a comment |
@Dirk Eddelbuettel: The basic idea is excellent but the code as shown can be improved. [Takes long to explain, hence a separate answer and not a comment.]
The hist()
function by default draws plots, so you need to add the plot=FALSE
option. Moreover, it is clearer to establish the plot area by a plot(0,0,type="n",...)
call in which you can add the axis labels, plot title etc. Finally, I would like to mention that one could also use shading to distinguish between the two histograms. Here is the code:
set.seed(42)
p1 <- hist(rnorm(500,4),plot=FALSE)
p2 <- hist(rnorm(500,6),plot=FALSE)
plot(0,0,type="n",xlim=c(0,10),ylim=c(0,100),xlab="x",ylab="freq",main="Two histograms")
plot(p1,col="green",density=10,angle=135,add=TRUE)
plot(p2,col="blue",density=10,angle=45,add=TRUE)
And here is the result (a bit too wide because of RStudio :-) ):
upping this because it is a very simple option using base and viable onpostscript
devices.
– MichaelChirico
Jan 27 '15 at 1:29
add a comment |
Plotly's R API might be useful for you. The graph below is here.
library(plotly)
#add username and key
p <- plotly(username="Username", key="API_KEY")
#generate data
x0 = rnorm(500)
x1 = rnorm(500)+1
#arrange your graph
data0 = list(x=x0,
name = "Carrots",
type='histogramx',
opacity = 0.8)
data1 = list(x=x1,
name = "Cukes",
type='histogramx',
opacity = 0.8)
#specify type as 'overlay'
layout <- list(barmode='overlay',
plot_bgcolor = 'rgba(249,249,251,.85)')
#format response, and use 'browseURL' to open graph tab in your browser.
response = p$plotly(data0, data1, kwargs=list(layout=layout))
url = response$url
filename = response$filename
browseURL(response$url)
Full disclosure: I'm on the team.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f3541713%2fhow-to-plot-two-histograms-together-in-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
8 Answers
8
active
oldest
votes
8 Answers
8
active
oldest
votes
active
oldest
votes
active
oldest
votes
That image you linked to was for density curves, not histograms.
If you've been reading on ggplot then maybe the only thing you're missing is combining your two data frames into one long one.
So, let's start with something like what you have, two separate sets of data and combine them.
carrots <- data.frame(length = rnorm(100000, 6, 2))
cukes <- data.frame(length = rnorm(50000, 7, 2.5))
# Now, combine your two dataframes into one.
# First make a new column in each that will be
# a variable to identify where they came from later.
carrots$veg <- 'carrot'
cukes$veg <- 'cuke'
# and combine into your new data frame vegLengths
vegLengths <- rbind(carrots, cukes)
After that, which is unnecessary if your data is in long formal already, you only need one line to make your plot.
ggplot(vegLengths, aes(length, fill = veg)) + geom_density(alpha = 0.2)
Now, if you really did want histograms the following will work. Note that you must change position from the default "stack" argument. You might miss that if you don't really have an idea of what your data should look like. A higher alpha looks better there. Also note that I made it density histograms. It's easy to remove the y = ..density..
to get it back to counts.
ggplot(vegLengths, aes(length, fill = veg)) +
geom_histogram(alpha = 0.5, aes(y = ..density..), position = 'identity')
8
If you'd like to stay with histograms, useggplot(vegLengths, aes(length, fill = veg)) + geom_bar(pos="dodge")
. This will make interlaced histograms, like in MATLAB.
– mbq
Aug 22 '10 at 16:07
1
Thx for the answer! The 'position="identity"' part is actually important as otherwise the bars are stacked which is misleading when combined with a density that by default seems to be "identity", i.e., overlayed as opposed to stacked.
– Shadow
Jun 8 '15 at 11:56
add a comment |
That image you linked to was for density curves, not histograms.
If you've been reading on ggplot then maybe the only thing you're missing is combining your two data frames into one long one.
So, let's start with something like what you have, two separate sets of data and combine them.
carrots <- data.frame(length = rnorm(100000, 6, 2))
cukes <- data.frame(length = rnorm(50000, 7, 2.5))
# Now, combine your two dataframes into one.
# First make a new column in each that will be
# a variable to identify where they came from later.
carrots$veg <- 'carrot'
cukes$veg <- 'cuke'
# and combine into your new data frame vegLengths
vegLengths <- rbind(carrots, cukes)
After that, which is unnecessary if your data is in long formal already, you only need one line to make your plot.
ggplot(vegLengths, aes(length, fill = veg)) + geom_density(alpha = 0.2)
Now, if you really did want histograms the following will work. Note that you must change position from the default "stack" argument. You might miss that if you don't really have an idea of what your data should look like. A higher alpha looks better there. Also note that I made it density histograms. It's easy to remove the y = ..density..
to get it back to counts.
ggplot(vegLengths, aes(length, fill = veg)) +
geom_histogram(alpha = 0.5, aes(y = ..density..), position = 'identity')
8
If you'd like to stay with histograms, useggplot(vegLengths, aes(length, fill = veg)) + geom_bar(pos="dodge")
. This will make interlaced histograms, like in MATLAB.
– mbq
Aug 22 '10 at 16:07
1
Thx for the answer! The 'position="identity"' part is actually important as otherwise the bars are stacked which is misleading when combined with a density that by default seems to be "identity", i.e., overlayed as opposed to stacked.
– Shadow
Jun 8 '15 at 11:56
add a comment |
That image you linked to was for density curves, not histograms.
If you've been reading on ggplot then maybe the only thing you're missing is combining your two data frames into one long one.
So, let's start with something like what you have, two separate sets of data and combine them.
carrots <- data.frame(length = rnorm(100000, 6, 2))
cukes <- data.frame(length = rnorm(50000, 7, 2.5))
# Now, combine your two dataframes into one.
# First make a new column in each that will be
# a variable to identify where they came from later.
carrots$veg <- 'carrot'
cukes$veg <- 'cuke'
# and combine into your new data frame vegLengths
vegLengths <- rbind(carrots, cukes)
After that, which is unnecessary if your data is in long formal already, you only need one line to make your plot.
ggplot(vegLengths, aes(length, fill = veg)) + geom_density(alpha = 0.2)
Now, if you really did want histograms the following will work. Note that you must change position from the default "stack" argument. You might miss that if you don't really have an idea of what your data should look like. A higher alpha looks better there. Also note that I made it density histograms. It's easy to remove the y = ..density..
to get it back to counts.
ggplot(vegLengths, aes(length, fill = veg)) +
geom_histogram(alpha = 0.5, aes(y = ..density..), position = 'identity')
That image you linked to was for density curves, not histograms.
If you've been reading on ggplot then maybe the only thing you're missing is combining your two data frames into one long one.
So, let's start with something like what you have, two separate sets of data and combine them.
carrots <- data.frame(length = rnorm(100000, 6, 2))
cukes <- data.frame(length = rnorm(50000, 7, 2.5))
# Now, combine your two dataframes into one.
# First make a new column in each that will be
# a variable to identify where they came from later.
carrots$veg <- 'carrot'
cukes$veg <- 'cuke'
# and combine into your new data frame vegLengths
vegLengths <- rbind(carrots, cukes)
After that, which is unnecessary if your data is in long formal already, you only need one line to make your plot.
ggplot(vegLengths, aes(length, fill = veg)) + geom_density(alpha = 0.2)
Now, if you really did want histograms the following will work. Note that you must change position from the default "stack" argument. You might miss that if you don't really have an idea of what your data should look like. A higher alpha looks better there. Also note that I made it density histograms. It's easy to remove the y = ..density..
to get it back to counts.
ggplot(vegLengths, aes(length, fill = veg)) +
geom_histogram(alpha = 0.5, aes(y = ..density..), position = 'identity')
edited Nov 25 '18 at 7:12
EPo
1,7331818
1,7331818
answered Aug 22 '10 at 15:51
JohnJohn
19k33875
19k33875
8
If you'd like to stay with histograms, useggplot(vegLengths, aes(length, fill = veg)) + geom_bar(pos="dodge")
. This will make interlaced histograms, like in MATLAB.
– mbq
Aug 22 '10 at 16:07
1
Thx for the answer! The 'position="identity"' part is actually important as otherwise the bars are stacked which is misleading when combined with a density that by default seems to be "identity", i.e., overlayed as opposed to stacked.
– Shadow
Jun 8 '15 at 11:56
add a comment |
8
If you'd like to stay with histograms, useggplot(vegLengths, aes(length, fill = veg)) + geom_bar(pos="dodge")
. This will make interlaced histograms, like in MATLAB.
– mbq
Aug 22 '10 at 16:07
1
Thx for the answer! The 'position="identity"' part is actually important as otherwise the bars are stacked which is misleading when combined with a density that by default seems to be "identity", i.e., overlayed as opposed to stacked.
– Shadow
Jun 8 '15 at 11:56
8
8
If you'd like to stay with histograms, use
ggplot(vegLengths, aes(length, fill = veg)) + geom_bar(pos="dodge")
. This will make interlaced histograms, like in MATLAB.– mbq
Aug 22 '10 at 16:07
If you'd like to stay with histograms, use
ggplot(vegLengths, aes(length, fill = veg)) + geom_bar(pos="dodge")
. This will make interlaced histograms, like in MATLAB.– mbq
Aug 22 '10 at 16:07
1
1
Thx for the answer! The 'position="identity"' part is actually important as otherwise the bars are stacked which is misleading when combined with a density that by default seems to be "identity", i.e., overlayed as opposed to stacked.
– Shadow
Jun 8 '15 at 11:56
Thx for the answer! The 'position="identity"' part is actually important as otherwise the bars are stacked which is misleading when combined with a density that by default seems to be "identity", i.e., overlayed as opposed to stacked.
– Shadow
Jun 8 '15 at 11:56
add a comment |
Here is an even simpler solution using base graphics and alpha-blending (which does not work on all graphics devices):
set.seed(42)
p1 <- hist(rnorm(500,4)) # centered at 4
p2 <- hist(rnorm(500,6)) # centered at 6
plot( p1, col=rgb(0,0,1,1/4), xlim=c(0,10)) # first histogram
plot( p2, col=rgb(1,0,0,1/4), xlim=c(0,10), add=T) # second
The key is that the colours are semi-transparent.
Edit, more than two years later: As this just got an upvote, I figure I may as well add a visual of what the code produces as alpha-blending is so darn useful:
5
+1 thank you all, can this be converted to a smoother gistogram (like had.co.nz/ggplot2/graphics/55078149a733dd1a0b42a57faf847036.png)?
– David B
Aug 25 '10 at 9:48
3
Why did you separate out theplot
commands? You can put all of those options into thehist
commands and just two it in the two lines.
– John
Apr 18 '14 at 0:36
@John How would you do it?
– SmallChess
Sep 16 '15 at 4:12
Put the options in theplot
command directly into the hist command as I said. Posting the code isn't what comments are for.
– John
Sep 16 '15 at 6:11
add a comment |
Here is an even simpler solution using base graphics and alpha-blending (which does not work on all graphics devices):
set.seed(42)
p1 <- hist(rnorm(500,4)) # centered at 4
p2 <- hist(rnorm(500,6)) # centered at 6
plot( p1, col=rgb(0,0,1,1/4), xlim=c(0,10)) # first histogram
plot( p2, col=rgb(1,0,0,1/4), xlim=c(0,10), add=T) # second
The key is that the colours are semi-transparent.
Edit, more than two years later: As this just got an upvote, I figure I may as well add a visual of what the code produces as alpha-blending is so darn useful:
5
+1 thank you all, can this be converted to a smoother gistogram (like had.co.nz/ggplot2/graphics/55078149a733dd1a0b42a57faf847036.png)?
– David B
Aug 25 '10 at 9:48
3
Why did you separate out theplot
commands? You can put all of those options into thehist
commands and just two it in the two lines.
– John
Apr 18 '14 at 0:36
@John How would you do it?
– SmallChess
Sep 16 '15 at 4:12
Put the options in theplot
command directly into the hist command as I said. Posting the code isn't what comments are for.
– John
Sep 16 '15 at 6:11
add a comment |
Here is an even simpler solution using base graphics and alpha-blending (which does not work on all graphics devices):
set.seed(42)
p1 <- hist(rnorm(500,4)) # centered at 4
p2 <- hist(rnorm(500,6)) # centered at 6
plot( p1, col=rgb(0,0,1,1/4), xlim=c(0,10)) # first histogram
plot( p2, col=rgb(1,0,0,1/4), xlim=c(0,10), add=T) # second
The key is that the colours are semi-transparent.
Edit, more than two years later: As this just got an upvote, I figure I may as well add a visual of what the code produces as alpha-blending is so darn useful:
Here is an even simpler solution using base graphics and alpha-blending (which does not work on all graphics devices):
set.seed(42)
p1 <- hist(rnorm(500,4)) # centered at 4
p2 <- hist(rnorm(500,6)) # centered at 6
plot( p1, col=rgb(0,0,1,1/4), xlim=c(0,10)) # first histogram
plot( p2, col=rgb(1,0,0,1/4), xlim=c(0,10), add=T) # second
The key is that the colours are semi-transparent.
Edit, more than two years later: As this just got an upvote, I figure I may as well add a visual of what the code produces as alpha-blending is so darn useful:
edited Sep 21 '12 at 1:36
answered Aug 24 '10 at 13:40
Dirk EddelbuettelDirk Eddelbuettel
280k38517604
280k38517604
5
+1 thank you all, can this be converted to a smoother gistogram (like had.co.nz/ggplot2/graphics/55078149a733dd1a0b42a57faf847036.png)?
– David B
Aug 25 '10 at 9:48
3
Why did you separate out theplot
commands? You can put all of those options into thehist
commands and just two it in the two lines.
– John
Apr 18 '14 at 0:36
@John How would you do it?
– SmallChess
Sep 16 '15 at 4:12
Put the options in theplot
command directly into the hist command as I said. Posting the code isn't what comments are for.
– John
Sep 16 '15 at 6:11
add a comment |
5
+1 thank you all, can this be converted to a smoother gistogram (like had.co.nz/ggplot2/graphics/55078149a733dd1a0b42a57faf847036.png)?
– David B
Aug 25 '10 at 9:48
3
Why did you separate out theplot
commands? You can put all of those options into thehist
commands and just two it in the two lines.
– John
Apr 18 '14 at 0:36
@John How would you do it?
– SmallChess
Sep 16 '15 at 4:12
Put the options in theplot
command directly into the hist command as I said. Posting the code isn't what comments are for.
– John
Sep 16 '15 at 6:11
5
5
+1 thank you all, can this be converted to a smoother gistogram (like had.co.nz/ggplot2/graphics/55078149a733dd1a0b42a57faf847036.png)?
– David B
Aug 25 '10 at 9:48
+1 thank you all, can this be converted to a smoother gistogram (like had.co.nz/ggplot2/graphics/55078149a733dd1a0b42a57faf847036.png)?
– David B
Aug 25 '10 at 9:48
3
3
Why did you separate out the
plot
commands? You can put all of those options into the hist
commands and just two it in the two lines.– John
Apr 18 '14 at 0:36
Why did you separate out the
plot
commands? You can put all of those options into the hist
commands and just two it in the two lines.– John
Apr 18 '14 at 0:36
@John How would you do it?
– SmallChess
Sep 16 '15 at 4:12
@John How would you do it?
– SmallChess
Sep 16 '15 at 4:12
Put the options in the
plot
command directly into the hist command as I said. Posting the code isn't what comments are for.– John
Sep 16 '15 at 6:11
Put the options in the
plot
command directly into the hist command as I said. Posting the code isn't what comments are for.– John
Sep 16 '15 at 6:11
add a comment |
Here's a function I wrote that uses pseudo-transparency to represent overlapping histograms
plotOverlappingHist <- function(a, b, colors=c("white","gray20","gray50"),
breaks=NULL, xlim=NULL, ylim=NULL){
ahist=NULL
bhist=NULL
if(!(is.null(breaks))){
ahist=hist(a,breaks=breaks,plot=F)
bhist=hist(b,breaks=breaks,plot=F)
} else {
ahist=hist(a,plot=F)
bhist=hist(b,plot=F)
dist = ahist$breaks[2]-ahist$breaks[1]
breaks = seq(min(ahist$breaks,bhist$breaks),max(ahist$breaks,bhist$breaks),dist)
ahist=hist(a,breaks=breaks,plot=F)
bhist=hist(b,breaks=breaks,plot=F)
}
if(is.null(xlim)){
xlim = c(min(ahist$breaks,bhist$breaks),max(ahist$breaks,bhist$breaks))
}
if(is.null(ylim)){
ylim = c(0,max(ahist$counts,bhist$counts))
}
overlap = ahist
for(i in 1:length(overlap$counts)){
if(ahist$counts[i] > 0 & bhist$counts[i] > 0){
overlap$counts[i] = min(ahist$counts[i],bhist$counts[i])
} else {
overlap$counts[i] = 0
}
}
plot(ahist, xlim=xlim, ylim=ylim, col=colors[1])
plot(bhist, xlim=xlim, ylim=ylim, col=colors[2], add=T)
plot(overlap, xlim=xlim, ylim=ylim, col=colors[3], add=T)
}
Here's another way to do it using R's support for transparent colors
a=rnorm(1000, 3, 1)
b=rnorm(1000, 6, 1)
hist(a, xlim=c(0,10), col="red")
hist(b, add=T, col=rgb(0, 1, 0, 0.5) )
The results end up looking something like this:
+1 for an option available on all graphics devices (e.g.postscript
)
– Lenna
Jan 9 '14 at 17:32
add a comment |
Here's a function I wrote that uses pseudo-transparency to represent overlapping histograms
plotOverlappingHist <- function(a, b, colors=c("white","gray20","gray50"),
breaks=NULL, xlim=NULL, ylim=NULL){
ahist=NULL
bhist=NULL
if(!(is.null(breaks))){
ahist=hist(a,breaks=breaks,plot=F)
bhist=hist(b,breaks=breaks,plot=F)
} else {
ahist=hist(a,plot=F)
bhist=hist(b,plot=F)
dist = ahist$breaks[2]-ahist$breaks[1]
breaks = seq(min(ahist$breaks,bhist$breaks),max(ahist$breaks,bhist$breaks),dist)
ahist=hist(a,breaks=breaks,plot=F)
bhist=hist(b,breaks=breaks,plot=F)
}
if(is.null(xlim)){
xlim = c(min(ahist$breaks,bhist$breaks),max(ahist$breaks,bhist$breaks))
}
if(is.null(ylim)){
ylim = c(0,max(ahist$counts,bhist$counts))
}
overlap = ahist
for(i in 1:length(overlap$counts)){
if(ahist$counts[i] > 0 & bhist$counts[i] > 0){
overlap$counts[i] = min(ahist$counts[i],bhist$counts[i])
} else {
overlap$counts[i] = 0
}
}
plot(ahist, xlim=xlim, ylim=ylim, col=colors[1])
plot(bhist, xlim=xlim, ylim=ylim, col=colors[2], add=T)
plot(overlap, xlim=xlim, ylim=ylim, col=colors[3], add=T)
}
Here's another way to do it using R's support for transparent colors
a=rnorm(1000, 3, 1)
b=rnorm(1000, 6, 1)
hist(a, xlim=c(0,10), col="red")
hist(b, add=T, col=rgb(0, 1, 0, 0.5) )
The results end up looking something like this:
+1 for an option available on all graphics devices (e.g.postscript
)
– Lenna
Jan 9 '14 at 17:32
add a comment |
Here's a function I wrote that uses pseudo-transparency to represent overlapping histograms
plotOverlappingHist <- function(a, b, colors=c("white","gray20","gray50"),
breaks=NULL, xlim=NULL, ylim=NULL){
ahist=NULL
bhist=NULL
if(!(is.null(breaks))){
ahist=hist(a,breaks=breaks,plot=F)
bhist=hist(b,breaks=breaks,plot=F)
} else {
ahist=hist(a,plot=F)
bhist=hist(b,plot=F)
dist = ahist$breaks[2]-ahist$breaks[1]
breaks = seq(min(ahist$breaks,bhist$breaks),max(ahist$breaks,bhist$breaks),dist)
ahist=hist(a,breaks=breaks,plot=F)
bhist=hist(b,breaks=breaks,plot=F)
}
if(is.null(xlim)){
xlim = c(min(ahist$breaks,bhist$breaks),max(ahist$breaks,bhist$breaks))
}
if(is.null(ylim)){
ylim = c(0,max(ahist$counts,bhist$counts))
}
overlap = ahist
for(i in 1:length(overlap$counts)){
if(ahist$counts[i] > 0 & bhist$counts[i] > 0){
overlap$counts[i] = min(ahist$counts[i],bhist$counts[i])
} else {
overlap$counts[i] = 0
}
}
plot(ahist, xlim=xlim, ylim=ylim, col=colors[1])
plot(bhist, xlim=xlim, ylim=ylim, col=colors[2], add=T)
plot(overlap, xlim=xlim, ylim=ylim, col=colors[3], add=T)
}
Here's another way to do it using R's support for transparent colors
a=rnorm(1000, 3, 1)
b=rnorm(1000, 6, 1)
hist(a, xlim=c(0,10), col="red")
hist(b, add=T, col=rgb(0, 1, 0, 0.5) )
The results end up looking something like this:
Here's a function I wrote that uses pseudo-transparency to represent overlapping histograms
plotOverlappingHist <- function(a, b, colors=c("white","gray20","gray50"),
breaks=NULL, xlim=NULL, ylim=NULL){
ahist=NULL
bhist=NULL
if(!(is.null(breaks))){
ahist=hist(a,breaks=breaks,plot=F)
bhist=hist(b,breaks=breaks,plot=F)
} else {
ahist=hist(a,plot=F)
bhist=hist(b,plot=F)
dist = ahist$breaks[2]-ahist$breaks[1]
breaks = seq(min(ahist$breaks,bhist$breaks),max(ahist$breaks,bhist$breaks),dist)
ahist=hist(a,breaks=breaks,plot=F)
bhist=hist(b,breaks=breaks,plot=F)
}
if(is.null(xlim)){
xlim = c(min(ahist$breaks,bhist$breaks),max(ahist$breaks,bhist$breaks))
}
if(is.null(ylim)){
ylim = c(0,max(ahist$counts,bhist$counts))
}
overlap = ahist
for(i in 1:length(overlap$counts)){
if(ahist$counts[i] > 0 & bhist$counts[i] > 0){
overlap$counts[i] = min(ahist$counts[i],bhist$counts[i])
} else {
overlap$counts[i] = 0
}
}
plot(ahist, xlim=xlim, ylim=ylim, col=colors[1])
plot(bhist, xlim=xlim, ylim=ylim, col=colors[2], add=T)
plot(overlap, xlim=xlim, ylim=ylim, col=colors[3], add=T)
}
Here's another way to do it using R's support for transparent colors
a=rnorm(1000, 3, 1)
b=rnorm(1000, 6, 1)
hist(a, xlim=c(0,10), col="red")
hist(b, add=T, col=rgb(0, 1, 0, 0.5) )
The results end up looking something like this:
edited Jul 5 '13 at 1:59
Darren Cook
17k768158
17k768158
answered Aug 22 '10 at 19:21
chrisamillerchrisamiller
2,03811623
2,03811623
+1 for an option available on all graphics devices (e.g.postscript
)
– Lenna
Jan 9 '14 at 17:32
add a comment |
+1 for an option available on all graphics devices (e.g.postscript
)
– Lenna
Jan 9 '14 at 17:32
+1 for an option available on all graphics devices (e.g.
postscript
)– Lenna
Jan 9 '14 at 17:32
+1 for an option available on all graphics devices (e.g.
postscript
)– Lenna
Jan 9 '14 at 17:32
add a comment |
Already beautiful answers are there, but I thought of adding this. Looks good to me.
(Copied random numbers from @Dirk). library(scales)
is needed`
set.seed(42)
hist(rnorm(500,4),xlim=c(0,10),col='skyblue',border=F)
hist(rnorm(500,6),add=T,col=scales::alpha('red',.5),border=F)
The result is...
Update: This overlapping function may also be useful to some.
hist0 <- function(...,col='skyblue',border=T) hist(...,col=col,border=border)
I feel result from hist0
is prettier to look than hist
hist2 <- function(var1, var2,name1='',name2='',
breaks = min(max(length(var1), length(var2)),20),
main0 = "", alpha0 = 0.5,grey=0,border=F,...) {
library(scales)
colh <- c(rgb(0, 1, 0, alpha0), rgb(1, 0, 0, alpha0))
if(grey) colh <- c(alpha(grey(0.1,alpha0)), alpha(grey(0.9,alpha0)))
max0 = max(var1, var2)
min0 = min(var1, var2)
den1_max <- hist(var1, breaks = breaks, plot = F)$density %>% max
den2_max <- hist(var2, breaks = breaks, plot = F)$density %>% max
den_max <- max(den2_max, den1_max)*1.2
var1 %>% hist0(xlim = c(min0 , max0) , breaks = breaks,
freq = F, col = colh[1], ylim = c(0, den_max), main = main0,border=border,...)
var2 %>% hist0(xlim = c(min0 , max0), breaks = breaks,
freq = F, col = colh[2], ylim = c(0, den_max), add = T,border=border,...)
legend(min0,den_max, legend = c(
ifelse(nchar(name1)==0,substitute(var1) %>% deparse,name1),
ifelse(nchar(name2)==0,substitute(var2) %>% deparse,name2),
"Overlap"), fill = c('white','white', colh[1]), bty = "n", cex=1,ncol=3)
legend(min0,den_max, legend = c(
ifelse(nchar(name1)==0,substitute(var1) %>% deparse,name1),
ifelse(nchar(name2)==0,substitute(var2) %>% deparse,name2),
"Overlap"), fill = c(colh, colh[2]), bty = "n", cex=1,ncol=3) }
The result of
par(mar=c(3, 4, 3, 2) + 0.1)
set.seed(100)
hist2(rnorm(10000,2),rnorm(10000,3),breaks = 50)
is
add a comment |
Already beautiful answers are there, but I thought of adding this. Looks good to me.
(Copied random numbers from @Dirk). library(scales)
is needed`
set.seed(42)
hist(rnorm(500,4),xlim=c(0,10),col='skyblue',border=F)
hist(rnorm(500,6),add=T,col=scales::alpha('red',.5),border=F)
The result is...
Update: This overlapping function may also be useful to some.
hist0 <- function(...,col='skyblue',border=T) hist(...,col=col,border=border)
I feel result from hist0
is prettier to look than hist
hist2 <- function(var1, var2,name1='',name2='',
breaks = min(max(length(var1), length(var2)),20),
main0 = "", alpha0 = 0.5,grey=0,border=F,...) {
library(scales)
colh <- c(rgb(0, 1, 0, alpha0), rgb(1, 0, 0, alpha0))
if(grey) colh <- c(alpha(grey(0.1,alpha0)), alpha(grey(0.9,alpha0)))
max0 = max(var1, var2)
min0 = min(var1, var2)
den1_max <- hist(var1, breaks = breaks, plot = F)$density %>% max
den2_max <- hist(var2, breaks = breaks, plot = F)$density %>% max
den_max <- max(den2_max, den1_max)*1.2
var1 %>% hist0(xlim = c(min0 , max0) , breaks = breaks,
freq = F, col = colh[1], ylim = c(0, den_max), main = main0,border=border,...)
var2 %>% hist0(xlim = c(min0 , max0), breaks = breaks,
freq = F, col = colh[2], ylim = c(0, den_max), add = T,border=border,...)
legend(min0,den_max, legend = c(
ifelse(nchar(name1)==0,substitute(var1) %>% deparse,name1),
ifelse(nchar(name2)==0,substitute(var2) %>% deparse,name2),
"Overlap"), fill = c('white','white', colh[1]), bty = "n", cex=1,ncol=3)
legend(min0,den_max, legend = c(
ifelse(nchar(name1)==0,substitute(var1) %>% deparse,name1),
ifelse(nchar(name2)==0,substitute(var2) %>% deparse,name2),
"Overlap"), fill = c(colh, colh[2]), bty = "n", cex=1,ncol=3) }
The result of
par(mar=c(3, 4, 3, 2) + 0.1)
set.seed(100)
hist2(rnorm(10000,2),rnorm(10000,3),breaks = 50)
is
add a comment |
Already beautiful answers are there, but I thought of adding this. Looks good to me.
(Copied random numbers from @Dirk). library(scales)
is needed`
set.seed(42)
hist(rnorm(500,4),xlim=c(0,10),col='skyblue',border=F)
hist(rnorm(500,6),add=T,col=scales::alpha('red',.5),border=F)
The result is...
Update: This overlapping function may also be useful to some.
hist0 <- function(...,col='skyblue',border=T) hist(...,col=col,border=border)
I feel result from hist0
is prettier to look than hist
hist2 <- function(var1, var2,name1='',name2='',
breaks = min(max(length(var1), length(var2)),20),
main0 = "", alpha0 = 0.5,grey=0,border=F,...) {
library(scales)
colh <- c(rgb(0, 1, 0, alpha0), rgb(1, 0, 0, alpha0))
if(grey) colh <- c(alpha(grey(0.1,alpha0)), alpha(grey(0.9,alpha0)))
max0 = max(var1, var2)
min0 = min(var1, var2)
den1_max <- hist(var1, breaks = breaks, plot = F)$density %>% max
den2_max <- hist(var2, breaks = breaks, plot = F)$density %>% max
den_max <- max(den2_max, den1_max)*1.2
var1 %>% hist0(xlim = c(min0 , max0) , breaks = breaks,
freq = F, col = colh[1], ylim = c(0, den_max), main = main0,border=border,...)
var2 %>% hist0(xlim = c(min0 , max0), breaks = breaks,
freq = F, col = colh[2], ylim = c(0, den_max), add = T,border=border,...)
legend(min0,den_max, legend = c(
ifelse(nchar(name1)==0,substitute(var1) %>% deparse,name1),
ifelse(nchar(name2)==0,substitute(var2) %>% deparse,name2),
"Overlap"), fill = c('white','white', colh[1]), bty = "n", cex=1,ncol=3)
legend(min0,den_max, legend = c(
ifelse(nchar(name1)==0,substitute(var1) %>% deparse,name1),
ifelse(nchar(name2)==0,substitute(var2) %>% deparse,name2),
"Overlap"), fill = c(colh, colh[2]), bty = "n", cex=1,ncol=3) }
The result of
par(mar=c(3, 4, 3, 2) + 0.1)
set.seed(100)
hist2(rnorm(10000,2),rnorm(10000,3),breaks = 50)
is
Already beautiful answers are there, but I thought of adding this. Looks good to me.
(Copied random numbers from @Dirk). library(scales)
is needed`
set.seed(42)
hist(rnorm(500,4),xlim=c(0,10),col='skyblue',border=F)
hist(rnorm(500,6),add=T,col=scales::alpha('red',.5),border=F)
The result is...
Update: This overlapping function may also be useful to some.
hist0 <- function(...,col='skyblue',border=T) hist(...,col=col,border=border)
I feel result from hist0
is prettier to look than hist
hist2 <- function(var1, var2,name1='',name2='',
breaks = min(max(length(var1), length(var2)),20),
main0 = "", alpha0 = 0.5,grey=0,border=F,...) {
library(scales)
colh <- c(rgb(0, 1, 0, alpha0), rgb(1, 0, 0, alpha0))
if(grey) colh <- c(alpha(grey(0.1,alpha0)), alpha(grey(0.9,alpha0)))
max0 = max(var1, var2)
min0 = min(var1, var2)
den1_max <- hist(var1, breaks = breaks, plot = F)$density %>% max
den2_max <- hist(var2, breaks = breaks, plot = F)$density %>% max
den_max <- max(den2_max, den1_max)*1.2
var1 %>% hist0(xlim = c(min0 , max0) , breaks = breaks,
freq = F, col = colh[1], ylim = c(0, den_max), main = main0,border=border,...)
var2 %>% hist0(xlim = c(min0 , max0), breaks = breaks,
freq = F, col = colh[2], ylim = c(0, den_max), add = T,border=border,...)
legend(min0,den_max, legend = c(
ifelse(nchar(name1)==0,substitute(var1) %>% deparse,name1),
ifelse(nchar(name2)==0,substitute(var2) %>% deparse,name2),
"Overlap"), fill = c('white','white', colh[1]), bty = "n", cex=1,ncol=3)
legend(min0,den_max, legend = c(
ifelse(nchar(name1)==0,substitute(var1) %>% deparse,name1),
ifelse(nchar(name2)==0,substitute(var2) %>% deparse,name2),
"Overlap"), fill = c(colh, colh[2]), bty = "n", cex=1,ncol=3) }
The result of
par(mar=c(3, 4, 3, 2) + 0.1)
set.seed(100)
hist2(rnorm(10000,2),rnorm(10000,3),breaks = 50)
is
edited Dec 3 '15 at 19:20
answered Nov 5 '14 at 21:17
Stat-RStat-R
2,30252753
2,30252753
add a comment |
add a comment |
Here is an example of how you can do it in "classic" R graphics:
## generate some random data
carrotLengths <- rnorm(1000,15,5)
cucumberLengths <- rnorm(200,20,7)
## calculate the histograms - don't plot yet
histCarrot <- hist(carrotLengths,plot = FALSE)
histCucumber <- hist(cucumberLengths,plot = FALSE)
## calculate the range of the graph
xlim <- range(histCucumber$breaks,histCarrot$breaks)
ylim <- range(0,histCucumber$density,
histCarrot$density)
## plot the first graph
plot(histCarrot,xlim = xlim, ylim = ylim,
col = rgb(1,0,0,0.4),xlab = 'Lengths',
freq = FALSE, ## relative, not absolute frequency
main = 'Distribution of carrots and cucumbers')
## plot the second graph on top of this
opar <- par(new = FALSE)
plot(histCucumber,xlim = xlim, ylim = ylim,
xaxt = 'n', yaxt = 'n', ## don't add axes
col = rgb(0,0,1,0.4), add = TRUE,
freq = FALSE) ## relative, not absolute frequency
## add a legend in the corner
legend('topleft',c('Carrots','Cucumbers'),
fill = rgb(1:0,0,0:1,0.4), bty = 'n',
border = NA)
par(opar)
The only issue with this is that it looks much better if the histogram breaks are aligned, which may have to be done manually (in the arguments passed to hist
).
Very nice. It also reminded me of that one stackoverflow.com/questions/3485456/…
– George Dontas
Aug 22 '10 at 16:11
2
hey... I usually am the one who puts up the base R version! :) You forgot to assign opar.
– John
Aug 22 '10 at 16:20
To @gd047: thanks for the link - it looks useful. To @John, thanks for pointing out the bug - I think the "o" was lost in the copy-paste.
– nullglob
Aug 22 '10 at 18:37
Upping this because this answer is the only one (besides those inggplot
) which directly accounts for if your two histograms have substantially different sample sizes.
– MichaelChirico
Jan 27 '15 at 1:42
I like this method, note that you can synchronize breaks by defining them with seq(). For example:breaks=seq(min(data$some_property), max(data$some_property), by=(max_prop - min_prop)/20)
– Deruijter
Sep 2 '16 at 3:48
add a comment |
Here is an example of how you can do it in "classic" R graphics:
## generate some random data
carrotLengths <- rnorm(1000,15,5)
cucumberLengths <- rnorm(200,20,7)
## calculate the histograms - don't plot yet
histCarrot <- hist(carrotLengths,plot = FALSE)
histCucumber <- hist(cucumberLengths,plot = FALSE)
## calculate the range of the graph
xlim <- range(histCucumber$breaks,histCarrot$breaks)
ylim <- range(0,histCucumber$density,
histCarrot$density)
## plot the first graph
plot(histCarrot,xlim = xlim, ylim = ylim,
col = rgb(1,0,0,0.4),xlab = 'Lengths',
freq = FALSE, ## relative, not absolute frequency
main = 'Distribution of carrots and cucumbers')
## plot the second graph on top of this
opar <- par(new = FALSE)
plot(histCucumber,xlim = xlim, ylim = ylim,
xaxt = 'n', yaxt = 'n', ## don't add axes
col = rgb(0,0,1,0.4), add = TRUE,
freq = FALSE) ## relative, not absolute frequency
## add a legend in the corner
legend('topleft',c('Carrots','Cucumbers'),
fill = rgb(1:0,0,0:1,0.4), bty = 'n',
border = NA)
par(opar)
The only issue with this is that it looks much better if the histogram breaks are aligned, which may have to be done manually (in the arguments passed to hist
).
Very nice. It also reminded me of that one stackoverflow.com/questions/3485456/…
– George Dontas
Aug 22 '10 at 16:11
2
hey... I usually am the one who puts up the base R version! :) You forgot to assign opar.
– John
Aug 22 '10 at 16:20
To @gd047: thanks for the link - it looks useful. To @John, thanks for pointing out the bug - I think the "o" was lost in the copy-paste.
– nullglob
Aug 22 '10 at 18:37
Upping this because this answer is the only one (besides those inggplot
) which directly accounts for if your two histograms have substantially different sample sizes.
– MichaelChirico
Jan 27 '15 at 1:42
I like this method, note that you can synchronize breaks by defining them with seq(). For example:breaks=seq(min(data$some_property), max(data$some_property), by=(max_prop - min_prop)/20)
– Deruijter
Sep 2 '16 at 3:48
add a comment |
Here is an example of how you can do it in "classic" R graphics:
## generate some random data
carrotLengths <- rnorm(1000,15,5)
cucumberLengths <- rnorm(200,20,7)
## calculate the histograms - don't plot yet
histCarrot <- hist(carrotLengths,plot = FALSE)
histCucumber <- hist(cucumberLengths,plot = FALSE)
## calculate the range of the graph
xlim <- range(histCucumber$breaks,histCarrot$breaks)
ylim <- range(0,histCucumber$density,
histCarrot$density)
## plot the first graph
plot(histCarrot,xlim = xlim, ylim = ylim,
col = rgb(1,0,0,0.4),xlab = 'Lengths',
freq = FALSE, ## relative, not absolute frequency
main = 'Distribution of carrots and cucumbers')
## plot the second graph on top of this
opar <- par(new = FALSE)
plot(histCucumber,xlim = xlim, ylim = ylim,
xaxt = 'n', yaxt = 'n', ## don't add axes
col = rgb(0,0,1,0.4), add = TRUE,
freq = FALSE) ## relative, not absolute frequency
## add a legend in the corner
legend('topleft',c('Carrots','Cucumbers'),
fill = rgb(1:0,0,0:1,0.4), bty = 'n',
border = NA)
par(opar)
The only issue with this is that it looks much better if the histogram breaks are aligned, which may have to be done manually (in the arguments passed to hist
).
Here is an example of how you can do it in "classic" R graphics:
## generate some random data
carrotLengths <- rnorm(1000,15,5)
cucumberLengths <- rnorm(200,20,7)
## calculate the histograms - don't plot yet
histCarrot <- hist(carrotLengths,plot = FALSE)
histCucumber <- hist(cucumberLengths,plot = FALSE)
## calculate the range of the graph
xlim <- range(histCucumber$breaks,histCarrot$breaks)
ylim <- range(0,histCucumber$density,
histCarrot$density)
## plot the first graph
plot(histCarrot,xlim = xlim, ylim = ylim,
col = rgb(1,0,0,0.4),xlab = 'Lengths',
freq = FALSE, ## relative, not absolute frequency
main = 'Distribution of carrots and cucumbers')
## plot the second graph on top of this
opar <- par(new = FALSE)
plot(histCucumber,xlim = xlim, ylim = ylim,
xaxt = 'n', yaxt = 'n', ## don't add axes
col = rgb(0,0,1,0.4), add = TRUE,
freq = FALSE) ## relative, not absolute frequency
## add a legend in the corner
legend('topleft',c('Carrots','Cucumbers'),
fill = rgb(1:0,0,0:1,0.4), bty = 'n',
border = NA)
par(opar)
The only issue with this is that it looks much better if the histogram breaks are aligned, which may have to be done manually (in the arguments passed to hist
).
edited Jan 28 '15 at 2:42
answered Aug 22 '10 at 15:58
nullglobnullglob
5,85612131
5,85612131
Very nice. It also reminded me of that one stackoverflow.com/questions/3485456/…
– George Dontas
Aug 22 '10 at 16:11
2
hey... I usually am the one who puts up the base R version! :) You forgot to assign opar.
– John
Aug 22 '10 at 16:20
To @gd047: thanks for the link - it looks useful. To @John, thanks for pointing out the bug - I think the "o" was lost in the copy-paste.
– nullglob
Aug 22 '10 at 18:37
Upping this because this answer is the only one (besides those inggplot
) which directly accounts for if your two histograms have substantially different sample sizes.
– MichaelChirico
Jan 27 '15 at 1:42
I like this method, note that you can synchronize breaks by defining them with seq(). For example:breaks=seq(min(data$some_property), max(data$some_property), by=(max_prop - min_prop)/20)
– Deruijter
Sep 2 '16 at 3:48
add a comment |
Very nice. It also reminded me of that one stackoverflow.com/questions/3485456/…
– George Dontas
Aug 22 '10 at 16:11
2
hey... I usually am the one who puts up the base R version! :) You forgot to assign opar.
– John
Aug 22 '10 at 16:20
To @gd047: thanks for the link - it looks useful. To @John, thanks for pointing out the bug - I think the "o" was lost in the copy-paste.
– nullglob
Aug 22 '10 at 18:37
Upping this because this answer is the only one (besides those inggplot
) which directly accounts for if your two histograms have substantially different sample sizes.
– MichaelChirico
Jan 27 '15 at 1:42
I like this method, note that you can synchronize breaks by defining them with seq(). For example:breaks=seq(min(data$some_property), max(data$some_property), by=(max_prop - min_prop)/20)
– Deruijter
Sep 2 '16 at 3:48
Very nice. It also reminded me of that one stackoverflow.com/questions/3485456/…
– George Dontas
Aug 22 '10 at 16:11
Very nice. It also reminded me of that one stackoverflow.com/questions/3485456/…
– George Dontas
Aug 22 '10 at 16:11
2
2
hey... I usually am the one who puts up the base R version! :) You forgot to assign opar.
– John
Aug 22 '10 at 16:20
hey... I usually am the one who puts up the base R version! :) You forgot to assign opar.
– John
Aug 22 '10 at 16:20
To @gd047: thanks for the link - it looks useful. To @John, thanks for pointing out the bug - I think the "o" was lost in the copy-paste.
– nullglob
Aug 22 '10 at 18:37
To @gd047: thanks for the link - it looks useful. To @John, thanks for pointing out the bug - I think the "o" was lost in the copy-paste.
– nullglob
Aug 22 '10 at 18:37
Upping this because this answer is the only one (besides those in
ggplot
) which directly accounts for if your two histograms have substantially different sample sizes.– MichaelChirico
Jan 27 '15 at 1:42
Upping this because this answer is the only one (besides those in
ggplot
) which directly accounts for if your two histograms have substantially different sample sizes.– MichaelChirico
Jan 27 '15 at 1:42
I like this method, note that you can synchronize breaks by defining them with seq(). For example:
breaks=seq(min(data$some_property), max(data$some_property), by=(max_prop - min_prop)/20)
– Deruijter
Sep 2 '16 at 3:48
I like this method, note that you can synchronize breaks by defining them with seq(). For example:
breaks=seq(min(data$some_property), max(data$some_property), by=(max_prop - min_prop)/20)
– Deruijter
Sep 2 '16 at 3:48
add a comment |
Here's the version like the ggplot2 one I gave only in base R. I copied some from @nullglob.
generate the data
carrots <- rnorm(100000,5,2)
cukes <- rnorm(50000,7,2.5)
You don't need to put it into a data frame like with ggplot2. The drawback of this method is that you have to write out a lot more of the details of the plot. The advantage is that you have control over more details of the plot.
## calculate the density - don't plot yet
densCarrot <- density(carrots)
densCuke <- density(cukes)
## calculate the range of the graph
xlim <- range(densCuke$x,densCarrot$x)
ylim <- range(0,densCuke$y, densCarrot$y)
#pick the colours
carrotCol <- rgb(1,0,0,0.2)
cukeCol <- rgb(0,0,1,0.2)
## plot the carrots and set up most of the plot parameters
plot(densCarrot, xlim = xlim, ylim = ylim, xlab = 'Lengths',
main = 'Distribution of carrots and cucumbers',
panel.first = grid())
#put our density plots in
polygon(densCarrot, density = -1, col = carrotCol)
polygon(densCuke, density = -1, col = cukeCol)
## add a legend in the corner
legend('topleft',c('Carrots','Cucumbers'),
fill = c(carrotCol, cukeCol), bty = 'n',
border = NA)
add a comment |
Here's the version like the ggplot2 one I gave only in base R. I copied some from @nullglob.
generate the data
carrots <- rnorm(100000,5,2)
cukes <- rnorm(50000,7,2.5)
You don't need to put it into a data frame like with ggplot2. The drawback of this method is that you have to write out a lot more of the details of the plot. The advantage is that you have control over more details of the plot.
## calculate the density - don't plot yet
densCarrot <- density(carrots)
densCuke <- density(cukes)
## calculate the range of the graph
xlim <- range(densCuke$x,densCarrot$x)
ylim <- range(0,densCuke$y, densCarrot$y)
#pick the colours
carrotCol <- rgb(1,0,0,0.2)
cukeCol <- rgb(0,0,1,0.2)
## plot the carrots and set up most of the plot parameters
plot(densCarrot, xlim = xlim, ylim = ylim, xlab = 'Lengths',
main = 'Distribution of carrots and cucumbers',
panel.first = grid())
#put our density plots in
polygon(densCarrot, density = -1, col = carrotCol)
polygon(densCuke, density = -1, col = cukeCol)
## add a legend in the corner
legend('topleft',c('Carrots','Cucumbers'),
fill = c(carrotCol, cukeCol), bty = 'n',
border = NA)
add a comment |
Here's the version like the ggplot2 one I gave only in base R. I copied some from @nullglob.
generate the data
carrots <- rnorm(100000,5,2)
cukes <- rnorm(50000,7,2.5)
You don't need to put it into a data frame like with ggplot2. The drawback of this method is that you have to write out a lot more of the details of the plot. The advantage is that you have control over more details of the plot.
## calculate the density - don't plot yet
densCarrot <- density(carrots)
densCuke <- density(cukes)
## calculate the range of the graph
xlim <- range(densCuke$x,densCarrot$x)
ylim <- range(0,densCuke$y, densCarrot$y)
#pick the colours
carrotCol <- rgb(1,0,0,0.2)
cukeCol <- rgb(0,0,1,0.2)
## plot the carrots and set up most of the plot parameters
plot(densCarrot, xlim = xlim, ylim = ylim, xlab = 'Lengths',
main = 'Distribution of carrots and cucumbers',
panel.first = grid())
#put our density plots in
polygon(densCarrot, density = -1, col = carrotCol)
polygon(densCuke, density = -1, col = cukeCol)
## add a legend in the corner
legend('topleft',c('Carrots','Cucumbers'),
fill = c(carrotCol, cukeCol), bty = 'n',
border = NA)
Here's the version like the ggplot2 one I gave only in base R. I copied some from @nullglob.
generate the data
carrots <- rnorm(100000,5,2)
cukes <- rnorm(50000,7,2.5)
You don't need to put it into a data frame like with ggplot2. The drawback of this method is that you have to write out a lot more of the details of the plot. The advantage is that you have control over more details of the plot.
## calculate the density - don't plot yet
densCarrot <- density(carrots)
densCuke <- density(cukes)
## calculate the range of the graph
xlim <- range(densCuke$x,densCarrot$x)
ylim <- range(0,densCuke$y, densCarrot$y)
#pick the colours
carrotCol <- rgb(1,0,0,0.2)
cukeCol <- rgb(0,0,1,0.2)
## plot the carrots and set up most of the plot parameters
plot(densCarrot, xlim = xlim, ylim = ylim, xlab = 'Lengths',
main = 'Distribution of carrots and cucumbers',
panel.first = grid())
#put our density plots in
polygon(densCarrot, density = -1, col = carrotCol)
polygon(densCuke, density = -1, col = cukeCol)
## add a legend in the corner
legend('topleft',c('Carrots','Cucumbers'),
fill = c(carrotCol, cukeCol), bty = 'n',
border = NA)
edited Oct 15 '13 at 1:56
answered Aug 22 '10 at 16:36
JohnJohn
19k33875
19k33875
add a comment |
add a comment |
@Dirk Eddelbuettel: The basic idea is excellent but the code as shown can be improved. [Takes long to explain, hence a separate answer and not a comment.]
The hist()
function by default draws plots, so you need to add the plot=FALSE
option. Moreover, it is clearer to establish the plot area by a plot(0,0,type="n",...)
call in which you can add the axis labels, plot title etc. Finally, I would like to mention that one could also use shading to distinguish between the two histograms. Here is the code:
set.seed(42)
p1 <- hist(rnorm(500,4),plot=FALSE)
p2 <- hist(rnorm(500,6),plot=FALSE)
plot(0,0,type="n",xlim=c(0,10),ylim=c(0,100),xlab="x",ylab="freq",main="Two histograms")
plot(p1,col="green",density=10,angle=135,add=TRUE)
plot(p2,col="blue",density=10,angle=45,add=TRUE)
And here is the result (a bit too wide because of RStudio :-) ):
upping this because it is a very simple option using base and viable onpostscript
devices.
– MichaelChirico
Jan 27 '15 at 1:29
add a comment |
@Dirk Eddelbuettel: The basic idea is excellent but the code as shown can be improved. [Takes long to explain, hence a separate answer and not a comment.]
The hist()
function by default draws plots, so you need to add the plot=FALSE
option. Moreover, it is clearer to establish the plot area by a plot(0,0,type="n",...)
call in which you can add the axis labels, plot title etc. Finally, I would like to mention that one could also use shading to distinguish between the two histograms. Here is the code:
set.seed(42)
p1 <- hist(rnorm(500,4),plot=FALSE)
p2 <- hist(rnorm(500,6),plot=FALSE)
plot(0,0,type="n",xlim=c(0,10),ylim=c(0,100),xlab="x",ylab="freq",main="Two histograms")
plot(p1,col="green",density=10,angle=135,add=TRUE)
plot(p2,col="blue",density=10,angle=45,add=TRUE)
And here is the result (a bit too wide because of RStudio :-) ):
upping this because it is a very simple option using base and viable onpostscript
devices.
– MichaelChirico
Jan 27 '15 at 1:29
add a comment |
@Dirk Eddelbuettel: The basic idea is excellent but the code as shown can be improved. [Takes long to explain, hence a separate answer and not a comment.]
The hist()
function by default draws plots, so you need to add the plot=FALSE
option. Moreover, it is clearer to establish the plot area by a plot(0,0,type="n",...)
call in which you can add the axis labels, plot title etc. Finally, I would like to mention that one could also use shading to distinguish between the two histograms. Here is the code:
set.seed(42)
p1 <- hist(rnorm(500,4),plot=FALSE)
p2 <- hist(rnorm(500,6),plot=FALSE)
plot(0,0,type="n",xlim=c(0,10),ylim=c(0,100),xlab="x",ylab="freq",main="Two histograms")
plot(p1,col="green",density=10,angle=135,add=TRUE)
plot(p2,col="blue",density=10,angle=45,add=TRUE)
And here is the result (a bit too wide because of RStudio :-) ):
@Dirk Eddelbuettel: The basic idea is excellent but the code as shown can be improved. [Takes long to explain, hence a separate answer and not a comment.]
The hist()
function by default draws plots, so you need to add the plot=FALSE
option. Moreover, it is clearer to establish the plot area by a plot(0,0,type="n",...)
call in which you can add the axis labels, plot title etc. Finally, I would like to mention that one could also use shading to distinguish between the two histograms. Here is the code:
set.seed(42)
p1 <- hist(rnorm(500,4),plot=FALSE)
p2 <- hist(rnorm(500,6),plot=FALSE)
plot(0,0,type="n",xlim=c(0,10),ylim=c(0,100),xlab="x",ylab="freq",main="Two histograms")
plot(p1,col="green",density=10,angle=135,add=TRUE)
plot(p2,col="blue",density=10,angle=45,add=TRUE)
And here is the result (a bit too wide because of RStudio :-) ):
answered Oct 9 '14 at 15:18
Laryx DeciduaLaryx Decidua
3,72722628
3,72722628
upping this because it is a very simple option using base and viable onpostscript
devices.
– MichaelChirico
Jan 27 '15 at 1:29
add a comment |
upping this because it is a very simple option using base and viable onpostscript
devices.
– MichaelChirico
Jan 27 '15 at 1:29
upping this because it is a very simple option using base and viable on
postscript
devices.– MichaelChirico
Jan 27 '15 at 1:29
upping this because it is a very simple option using base and viable on
postscript
devices.– MichaelChirico
Jan 27 '15 at 1:29
add a comment |
Plotly's R API might be useful for you. The graph below is here.
library(plotly)
#add username and key
p <- plotly(username="Username", key="API_KEY")
#generate data
x0 = rnorm(500)
x1 = rnorm(500)+1
#arrange your graph
data0 = list(x=x0,
name = "Carrots",
type='histogramx',
opacity = 0.8)
data1 = list(x=x1,
name = "Cukes",
type='histogramx',
opacity = 0.8)
#specify type as 'overlay'
layout <- list(barmode='overlay',
plot_bgcolor = 'rgba(249,249,251,.85)')
#format response, and use 'browseURL' to open graph tab in your browser.
response = p$plotly(data0, data1, kwargs=list(layout=layout))
url = response$url
filename = response$filename
browseURL(response$url)
Full disclosure: I'm on the team.
add a comment |
Plotly's R API might be useful for you. The graph below is here.
library(plotly)
#add username and key
p <- plotly(username="Username", key="API_KEY")
#generate data
x0 = rnorm(500)
x1 = rnorm(500)+1
#arrange your graph
data0 = list(x=x0,
name = "Carrots",
type='histogramx',
opacity = 0.8)
data1 = list(x=x1,
name = "Cukes",
type='histogramx',
opacity = 0.8)
#specify type as 'overlay'
layout <- list(barmode='overlay',
plot_bgcolor = 'rgba(249,249,251,.85)')
#format response, and use 'browseURL' to open graph tab in your browser.
response = p$plotly(data0, data1, kwargs=list(layout=layout))
url = response$url
filename = response$filename
browseURL(response$url)
Full disclosure: I'm on the team.
add a comment |
Plotly's R API might be useful for you. The graph below is here.
library(plotly)
#add username and key
p <- plotly(username="Username", key="API_KEY")
#generate data
x0 = rnorm(500)
x1 = rnorm(500)+1
#arrange your graph
data0 = list(x=x0,
name = "Carrots",
type='histogramx',
opacity = 0.8)
data1 = list(x=x1,
name = "Cukes",
type='histogramx',
opacity = 0.8)
#specify type as 'overlay'
layout <- list(barmode='overlay',
plot_bgcolor = 'rgba(249,249,251,.85)')
#format response, and use 'browseURL' to open graph tab in your browser.
response = p$plotly(data0, data1, kwargs=list(layout=layout))
url = response$url
filename = response$filename
browseURL(response$url)
Full disclosure: I'm on the team.
Plotly's R API might be useful for you. The graph below is here.
library(plotly)
#add username and key
p <- plotly(username="Username", key="API_KEY")
#generate data
x0 = rnorm(500)
x1 = rnorm(500)+1
#arrange your graph
data0 = list(x=x0,
name = "Carrots",
type='histogramx',
opacity = 0.8)
data1 = list(x=x1,
name = "Cukes",
type='histogramx',
opacity = 0.8)
#specify type as 'overlay'
layout <- list(barmode='overlay',
plot_bgcolor = 'rgba(249,249,251,.85)')
#format response, and use 'browseURL' to open graph tab in your browser.
response = p$plotly(data0, data1, kwargs=list(layout=layout))
url = response$url
filename = response$filename
browseURL(response$url)
Full disclosure: I'm on the team.
edited Mar 26 '14 at 5:25
answered Jan 23 '14 at 6:11
Mateo SanchezMateo Sanchez
1,1911014
1,1911014
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f3541713%2fhow-to-plot-two-histograms-together-in-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Btw, which software are you planning to use? For open source, I'd recommend gnuplot.info [gnuplot]. In its documentation, I believe you will find certain technique and sample scripts to do what you want.
– noel aye
Aug 22 '10 at 14:21
1
I'm using R as the tag suggests (edited post to make this clear)
– David B
Aug 22 '10 at 14:36
1
someone posted some code snippet to do it in this thread: stackoverflow.com/questions/3485456/…
– nico
Aug 22 '10 at 16:11