Swift Knapsack problem using bottom-down (memoization) approach
$begingroup$
I'm solving the "unbounded" variant of the knapsack problem, meaning the repetition of items is allowed. As in the Hackerrank version of the knapsack problem, I am returning the sum nearest to, not exceeding the target.
Some sample calls, with the solutions afterwards ar
unboundedKnapsack(k: 10, arr: [2,3,4]) // 10
unboundedKnapsack(k: 12, arr: [1,6,9]) //12
unboundedKnapsack(k: 9, arr: [3,4,4,4,8]) // 9
unboundedKnapsack(k: 3, arr: [2]) // 2
unboundedKnapsack(k: 13, arr: [3,7,9,11]) //13
unboundedKnapsack(k: 11, arr: [3,7,9]) // 10
I developed a recursive solution, and as below I've added memoization:
func unboundedKnapsack(k: Int, arr: [Int]) -> Int {
var cache: [[Int]] = Array(repeating: Array(repeating: 0, count: arr.count), count: k)
return k - knap(k, arr, 0, 0, &cache)
}
func knap(_ target: Int, _ arr: [Int], _ ptr: Int, _ current : Int, _ cache: inout [[Int]]) -> Int {
// greedy - we either take the current item or we don't
if (current > target) {return Int.max}
if (ptr > arr.count - 1) {return target - current}
if (current == target) {return target - current}
if (cache[current][ptr] != 0) {return cache[current][ptr]}
let result = min(
// take the current and move pointer
knap(target, arr, ptr + 1, current + arr[ptr], &cache)
,
// take the current and leave the pointer so we can take more
knap(target, arr, ptr, current + arr[ptr], &cache),
// do not take the current and move pointer
knap(target, arr, ptr + 1, current, &cache)
)
cache[current][ptr] = result
return result
}
I haven't been able to test all inputs for my solution, so I wanted comments on how this particular approach could be improved (using my memoization as shown rather than changing the approach).
swift
$endgroup$
add a comment |
$begingroup$
I'm solving the "unbounded" variant of the knapsack problem, meaning the repetition of items is allowed. As in the Hackerrank version of the knapsack problem, I am returning the sum nearest to, not exceeding the target.
Some sample calls, with the solutions afterwards ar
unboundedKnapsack(k: 10, arr: [2,3,4]) // 10
unboundedKnapsack(k: 12, arr: [1,6,9]) //12
unboundedKnapsack(k: 9, arr: [3,4,4,4,8]) // 9
unboundedKnapsack(k: 3, arr: [2]) // 2
unboundedKnapsack(k: 13, arr: [3,7,9,11]) //13
unboundedKnapsack(k: 11, arr: [3,7,9]) // 10
I developed a recursive solution, and as below I've added memoization:
func unboundedKnapsack(k: Int, arr: [Int]) -> Int {
var cache: [[Int]] = Array(repeating: Array(repeating: 0, count: arr.count), count: k)
return k - knap(k, arr, 0, 0, &cache)
}
func knap(_ target: Int, _ arr: [Int], _ ptr: Int, _ current : Int, _ cache: inout [[Int]]) -> Int {
// greedy - we either take the current item or we don't
if (current > target) {return Int.max}
if (ptr > arr.count - 1) {return target - current}
if (current == target) {return target - current}
if (cache[current][ptr] != 0) {return cache[current][ptr]}
let result = min(
// take the current and move pointer
knap(target, arr, ptr + 1, current + arr[ptr], &cache)
,
// take the current and leave the pointer so we can take more
knap(target, arr, ptr, current + arr[ptr], &cache),
// do not take the current and move pointer
knap(target, arr, ptr + 1, current, &cache)
)
cache[current][ptr] = result
return result
}
I haven't been able to test all inputs for my solution, so I wanted comments on how this particular approach could be improved (using my memoization as shown rather than changing the approach).
swift
$endgroup$
add a comment |
$begingroup$
I'm solving the "unbounded" variant of the knapsack problem, meaning the repetition of items is allowed. As in the Hackerrank version of the knapsack problem, I am returning the sum nearest to, not exceeding the target.
Some sample calls, with the solutions afterwards ar
unboundedKnapsack(k: 10, arr: [2,3,4]) // 10
unboundedKnapsack(k: 12, arr: [1,6,9]) //12
unboundedKnapsack(k: 9, arr: [3,4,4,4,8]) // 9
unboundedKnapsack(k: 3, arr: [2]) // 2
unboundedKnapsack(k: 13, arr: [3,7,9,11]) //13
unboundedKnapsack(k: 11, arr: [3,7,9]) // 10
I developed a recursive solution, and as below I've added memoization:
func unboundedKnapsack(k: Int, arr: [Int]) -> Int {
var cache: [[Int]] = Array(repeating: Array(repeating: 0, count: arr.count), count: k)
return k - knap(k, arr, 0, 0, &cache)
}
func knap(_ target: Int, _ arr: [Int], _ ptr: Int, _ current : Int, _ cache: inout [[Int]]) -> Int {
// greedy - we either take the current item or we don't
if (current > target) {return Int.max}
if (ptr > arr.count - 1) {return target - current}
if (current == target) {return target - current}
if (cache[current][ptr] != 0) {return cache[current][ptr]}
let result = min(
// take the current and move pointer
knap(target, arr, ptr + 1, current + arr[ptr], &cache)
,
// take the current and leave the pointer so we can take more
knap(target, arr, ptr, current + arr[ptr], &cache),
// do not take the current and move pointer
knap(target, arr, ptr + 1, current, &cache)
)
cache[current][ptr] = result
return result
}
I haven't been able to test all inputs for my solution, so I wanted comments on how this particular approach could be improved (using my memoization as shown rather than changing the approach).
swift
$endgroup$
I'm solving the "unbounded" variant of the knapsack problem, meaning the repetition of items is allowed. As in the Hackerrank version of the knapsack problem, I am returning the sum nearest to, not exceeding the target.
Some sample calls, with the solutions afterwards ar
unboundedKnapsack(k: 10, arr: [2,3,4]) // 10
unboundedKnapsack(k: 12, arr: [1,6,9]) //12
unboundedKnapsack(k: 9, arr: [3,4,4,4,8]) // 9
unboundedKnapsack(k: 3, arr: [2]) // 2
unboundedKnapsack(k: 13, arr: [3,7,9,11]) //13
unboundedKnapsack(k: 11, arr: [3,7,9]) // 10
I developed a recursive solution, and as below I've added memoization:
func unboundedKnapsack(k: Int, arr: [Int]) -> Int {
var cache: [[Int]] = Array(repeating: Array(repeating: 0, count: arr.count), count: k)
return k - knap(k, arr, 0, 0, &cache)
}
func knap(_ target: Int, _ arr: [Int], _ ptr: Int, _ current : Int, _ cache: inout [[Int]]) -> Int {
// greedy - we either take the current item or we don't
if (current > target) {return Int.max}
if (ptr > arr.count - 1) {return target - current}
if (current == target) {return target - current}
if (cache[current][ptr] != 0) {return cache[current][ptr]}
let result = min(
// take the current and move pointer
knap(target, arr, ptr + 1, current + arr[ptr], &cache)
,
// take the current and leave the pointer so we can take more
knap(target, arr, ptr, current + arr[ptr], &cache),
// do not take the current and move pointer
knap(target, arr, ptr + 1, current, &cache)
)
cache[current][ptr] = result
return result
}
I haven't been able to test all inputs for my solution, so I wanted comments on how this particular approach could be improved (using my memoization as shown rather than changing the approach).
swift
swift
asked 4 mins ago
stevenpcurtisstevenpcurtis
1314
1314
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "196"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f213009%2fswift-knapsack-problem-using-bottom-down-memoization-approach%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f213009%2fswift-knapsack-problem-using-bottom-down-memoization-approach%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown