Deriving the translog production function












1














Ive been having difficulty deriving the translog production function defined as:



$$ln y=alpha_0+sum_{i=1}^nalpha_i ln x_i+frac{1}{2}sum_{i=1}^nsum_{j=1}^n beta_{ij}ln x_iln x_j $$



I know we start with a log-log production function.
$$ln y=alpha_0+sum_{i=1}^nalpha_iln x_i$$



the next step from what i recall is to take the taylor series of this function around the point $x_i=0$. the reason why this is an issue is because $ln(0)$ is undefined.



How exactly is this function derived?










share|improve this question



























    1














    Ive been having difficulty deriving the translog production function defined as:



    $$ln y=alpha_0+sum_{i=1}^nalpha_i ln x_i+frac{1}{2}sum_{i=1}^nsum_{j=1}^n beta_{ij}ln x_iln x_j $$



    I know we start with a log-log production function.
    $$ln y=alpha_0+sum_{i=1}^nalpha_iln x_i$$



    the next step from what i recall is to take the taylor series of this function around the point $x_i=0$. the reason why this is an issue is because $ln(0)$ is undefined.



    How exactly is this function derived?










    share|improve this question

























      1












      1








      1







      Ive been having difficulty deriving the translog production function defined as:



      $$ln y=alpha_0+sum_{i=1}^nalpha_i ln x_i+frac{1}{2}sum_{i=1}^nsum_{j=1}^n beta_{ij}ln x_iln x_j $$



      I know we start with a log-log production function.
      $$ln y=alpha_0+sum_{i=1}^nalpha_iln x_i$$



      the next step from what i recall is to take the taylor series of this function around the point $x_i=0$. the reason why this is an issue is because $ln(0)$ is undefined.



      How exactly is this function derived?










      share|improve this question













      Ive been having difficulty deriving the translog production function defined as:



      $$ln y=alpha_0+sum_{i=1}^nalpha_i ln x_i+frac{1}{2}sum_{i=1}^nsum_{j=1}^n beta_{ij}ln x_iln x_j $$



      I know we start with a log-log production function.
      $$ln y=alpha_0+sum_{i=1}^nalpha_iln x_i$$



      the next step from what i recall is to take the taylor series of this function around the point $x_i=0$. the reason why this is an issue is because $ln(0)$ is undefined.



      How exactly is this function derived?







      microeconomics econometrics production-function






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 7 hours ago









      EconJohn

      3,3571938




      3,3571938






















          1 Answer
          1






          active

          oldest

          votes


















          2














          The idea is indeed to Taylor expand the production function. To justify it, you can start with the constant elasticity of substitution function, which in the two-factor case can be written as



          $$
          Y = A[alpha K^gamma + (1 - alpha)L^gamma]^{1/gamma} tag{1}
          $$



          in this case $X_1 = K$, $X_2 = L$. Now we expand $ln Y$ around $gamma = 0$




          $gamma^0$ term




          $$
          lim_{gamma to 0} ln Y = ln (A K^alpha L^{1 - alpha}) tag{2}
          $$




          $gamma^1$ term




          begin{eqnarray}
          lim_{gamma to 0} frac{partial ln Y}{partial gamma} &=& lim_{gamma to 0}frac{alpha K^{gamma } ln (L)+(1-alpha ) l^{gamma } log (L)}{gamma
          left(alpha K^{gamma }+(1-alpha ) L^{gamma }right)}-frac{ln left(alpha
          K^{gamma }+(1-alpha ) L^{gamma }right)}{gamma ^2}\
          &=& frac{1}{2} (1 - alpha) alpha (ln (K)-ln (L))^2 tag{3}
          end{eqnarray}



          Up to first order we have then



          begin{eqnarray}
          ln Y &approx& color{blue}{(ln Y)_{gamma = 0}} + color{red}{left(frac{partial ln Y}{partial gamma}right)_{gamma = 0} gamma} \
          &stackrel{(2),(3)}{=}& color{blue}{ln A + alpha ln K + (1 - alpha) ln L} + color{red}{frac{1}{2}alpha(1 - alpha)gamma [ln K - ln L]^2} \
          &=& ln A + alpha ln X_1 + (1 - alpha) ln X_2 + frac{alpha gamma (1 -alpha)}{2}left[ln^2 X_1 -2ln X_1ln X_2 + ln^2 X_2 right] \
          &=& alpha_0 + sum_{i = 1}^2 alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^2 beta_{ij}ln X_i ln X_j tag{3}
          end{eqnarray}



          This is naturally extended to $n > 2$ as



          $$
          ln Y = alpha_0 + sum_{i = 1}^n alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^n beta_{ij}ln X_i ln X_j
          $$






          share|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "591"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2feconomics.stackexchange.com%2fquestions%2f26144%2fderiving-the-translog-production-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            The idea is indeed to Taylor expand the production function. To justify it, you can start with the constant elasticity of substitution function, which in the two-factor case can be written as



            $$
            Y = A[alpha K^gamma + (1 - alpha)L^gamma]^{1/gamma} tag{1}
            $$



            in this case $X_1 = K$, $X_2 = L$. Now we expand $ln Y$ around $gamma = 0$




            $gamma^0$ term




            $$
            lim_{gamma to 0} ln Y = ln (A K^alpha L^{1 - alpha}) tag{2}
            $$




            $gamma^1$ term




            begin{eqnarray}
            lim_{gamma to 0} frac{partial ln Y}{partial gamma} &=& lim_{gamma to 0}frac{alpha K^{gamma } ln (L)+(1-alpha ) l^{gamma } log (L)}{gamma
            left(alpha K^{gamma }+(1-alpha ) L^{gamma }right)}-frac{ln left(alpha
            K^{gamma }+(1-alpha ) L^{gamma }right)}{gamma ^2}\
            &=& frac{1}{2} (1 - alpha) alpha (ln (K)-ln (L))^2 tag{3}
            end{eqnarray}



            Up to first order we have then



            begin{eqnarray}
            ln Y &approx& color{blue}{(ln Y)_{gamma = 0}} + color{red}{left(frac{partial ln Y}{partial gamma}right)_{gamma = 0} gamma} \
            &stackrel{(2),(3)}{=}& color{blue}{ln A + alpha ln K + (1 - alpha) ln L} + color{red}{frac{1}{2}alpha(1 - alpha)gamma [ln K - ln L]^2} \
            &=& ln A + alpha ln X_1 + (1 - alpha) ln X_2 + frac{alpha gamma (1 -alpha)}{2}left[ln^2 X_1 -2ln X_1ln X_2 + ln^2 X_2 right] \
            &=& alpha_0 + sum_{i = 1}^2 alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^2 beta_{ij}ln X_i ln X_j tag{3}
            end{eqnarray}



            This is naturally extended to $n > 2$ as



            $$
            ln Y = alpha_0 + sum_{i = 1}^n alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^n beta_{ij}ln X_i ln X_j
            $$






            share|improve this answer


























              2














              The idea is indeed to Taylor expand the production function. To justify it, you can start with the constant elasticity of substitution function, which in the two-factor case can be written as



              $$
              Y = A[alpha K^gamma + (1 - alpha)L^gamma]^{1/gamma} tag{1}
              $$



              in this case $X_1 = K$, $X_2 = L$. Now we expand $ln Y$ around $gamma = 0$




              $gamma^0$ term




              $$
              lim_{gamma to 0} ln Y = ln (A K^alpha L^{1 - alpha}) tag{2}
              $$




              $gamma^1$ term




              begin{eqnarray}
              lim_{gamma to 0} frac{partial ln Y}{partial gamma} &=& lim_{gamma to 0}frac{alpha K^{gamma } ln (L)+(1-alpha ) l^{gamma } log (L)}{gamma
              left(alpha K^{gamma }+(1-alpha ) L^{gamma }right)}-frac{ln left(alpha
              K^{gamma }+(1-alpha ) L^{gamma }right)}{gamma ^2}\
              &=& frac{1}{2} (1 - alpha) alpha (ln (K)-ln (L))^2 tag{3}
              end{eqnarray}



              Up to first order we have then



              begin{eqnarray}
              ln Y &approx& color{blue}{(ln Y)_{gamma = 0}} + color{red}{left(frac{partial ln Y}{partial gamma}right)_{gamma = 0} gamma} \
              &stackrel{(2),(3)}{=}& color{blue}{ln A + alpha ln K + (1 - alpha) ln L} + color{red}{frac{1}{2}alpha(1 - alpha)gamma [ln K - ln L]^2} \
              &=& ln A + alpha ln X_1 + (1 - alpha) ln X_2 + frac{alpha gamma (1 -alpha)}{2}left[ln^2 X_1 -2ln X_1ln X_2 + ln^2 X_2 right] \
              &=& alpha_0 + sum_{i = 1}^2 alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^2 beta_{ij}ln X_i ln X_j tag{3}
              end{eqnarray}



              This is naturally extended to $n > 2$ as



              $$
              ln Y = alpha_0 + sum_{i = 1}^n alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^n beta_{ij}ln X_i ln X_j
              $$






              share|improve this answer
























                2












                2








                2






                The idea is indeed to Taylor expand the production function. To justify it, you can start with the constant elasticity of substitution function, which in the two-factor case can be written as



                $$
                Y = A[alpha K^gamma + (1 - alpha)L^gamma]^{1/gamma} tag{1}
                $$



                in this case $X_1 = K$, $X_2 = L$. Now we expand $ln Y$ around $gamma = 0$




                $gamma^0$ term




                $$
                lim_{gamma to 0} ln Y = ln (A K^alpha L^{1 - alpha}) tag{2}
                $$




                $gamma^1$ term




                begin{eqnarray}
                lim_{gamma to 0} frac{partial ln Y}{partial gamma} &=& lim_{gamma to 0}frac{alpha K^{gamma } ln (L)+(1-alpha ) l^{gamma } log (L)}{gamma
                left(alpha K^{gamma }+(1-alpha ) L^{gamma }right)}-frac{ln left(alpha
                K^{gamma }+(1-alpha ) L^{gamma }right)}{gamma ^2}\
                &=& frac{1}{2} (1 - alpha) alpha (ln (K)-ln (L))^2 tag{3}
                end{eqnarray}



                Up to first order we have then



                begin{eqnarray}
                ln Y &approx& color{blue}{(ln Y)_{gamma = 0}} + color{red}{left(frac{partial ln Y}{partial gamma}right)_{gamma = 0} gamma} \
                &stackrel{(2),(3)}{=}& color{blue}{ln A + alpha ln K + (1 - alpha) ln L} + color{red}{frac{1}{2}alpha(1 - alpha)gamma [ln K - ln L]^2} \
                &=& ln A + alpha ln X_1 + (1 - alpha) ln X_2 + frac{alpha gamma (1 -alpha)}{2}left[ln^2 X_1 -2ln X_1ln X_2 + ln^2 X_2 right] \
                &=& alpha_0 + sum_{i = 1}^2 alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^2 beta_{ij}ln X_i ln X_j tag{3}
                end{eqnarray}



                This is naturally extended to $n > 2$ as



                $$
                ln Y = alpha_0 + sum_{i = 1}^n alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^n beta_{ij}ln X_i ln X_j
                $$






                share|improve this answer












                The idea is indeed to Taylor expand the production function. To justify it, you can start with the constant elasticity of substitution function, which in the two-factor case can be written as



                $$
                Y = A[alpha K^gamma + (1 - alpha)L^gamma]^{1/gamma} tag{1}
                $$



                in this case $X_1 = K$, $X_2 = L$. Now we expand $ln Y$ around $gamma = 0$




                $gamma^0$ term




                $$
                lim_{gamma to 0} ln Y = ln (A K^alpha L^{1 - alpha}) tag{2}
                $$




                $gamma^1$ term




                begin{eqnarray}
                lim_{gamma to 0} frac{partial ln Y}{partial gamma} &=& lim_{gamma to 0}frac{alpha K^{gamma } ln (L)+(1-alpha ) l^{gamma } log (L)}{gamma
                left(alpha K^{gamma }+(1-alpha ) L^{gamma }right)}-frac{ln left(alpha
                K^{gamma }+(1-alpha ) L^{gamma }right)}{gamma ^2}\
                &=& frac{1}{2} (1 - alpha) alpha (ln (K)-ln (L))^2 tag{3}
                end{eqnarray}



                Up to first order we have then



                begin{eqnarray}
                ln Y &approx& color{blue}{(ln Y)_{gamma = 0}} + color{red}{left(frac{partial ln Y}{partial gamma}right)_{gamma = 0} gamma} \
                &stackrel{(2),(3)}{=}& color{blue}{ln A + alpha ln K + (1 - alpha) ln L} + color{red}{frac{1}{2}alpha(1 - alpha)gamma [ln K - ln L]^2} \
                &=& ln A + alpha ln X_1 + (1 - alpha) ln X_2 + frac{alpha gamma (1 -alpha)}{2}left[ln^2 X_1 -2ln X_1ln X_2 + ln^2 X_2 right] \
                &=& alpha_0 + sum_{i = 1}^2 alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^2 beta_{ij}ln X_i ln X_j tag{3}
                end{eqnarray}



                This is naturally extended to $n > 2$ as



                $$
                ln Y = alpha_0 + sum_{i = 1}^n alpha_i ln X_i + frac{1}{2}sum_{i, j = 1}^n beta_{ij}ln X_i ln X_j
                $$







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 5 hours ago









                caverac

                7721214




                7721214






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Economics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2feconomics.stackexchange.com%2fquestions%2f26144%2fderiving-the-translog-production-function%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    404 Error Contact Form 7 ajax form submitting

                    How to know if a Active Directory user can login interactively

                    TypeError: fit_transform() missing 1 required positional argument: 'X'