Removing unwanted characters and editing Column names in pandas
I have pandas df with certain column names. The column names are as below,
u'Kanta/City', u'Aluepaso/Regional Level', u'Akue/District', u'Seotukartakudi/Map code', u'k�/Age', u'2015', u'2016', u'2017', u'2018'.
What I would like to do is, rename the columns in one line of code as below,
'City', 'Regional_Level', 'District', 'Map_Code', 'Age', '2015', '2016', '2017', '2018'.
Is there any efficient way of doing so (with lambda function)?
python pandas lambda multiple-columns rename
add a comment |
I have pandas df with certain column names. The column names are as below,
u'Kanta/City', u'Aluepaso/Regional Level', u'Akue/District', u'Seotukartakudi/Map code', u'k�/Age', u'2015', u'2016', u'2017', u'2018'.
What I would like to do is, rename the columns in one line of code as below,
'City', 'Regional_Level', 'District', 'Map_Code', 'Age', '2015', '2016', '2017', '2018'.
Is there any efficient way of doing so (with lambda function)?
python pandas lambda multiple-columns rename
@ Kripalu Sar what you should do when someone answers your question must learn!
– pygo
Nov 23 '18 at 19:22
add a comment |
I have pandas df with certain column names. The column names are as below,
u'Kanta/City', u'Aluepaso/Regional Level', u'Akue/District', u'Seotukartakudi/Map code', u'k�/Age', u'2015', u'2016', u'2017', u'2018'.
What I would like to do is, rename the columns in one line of code as below,
'City', 'Regional_Level', 'District', 'Map_Code', 'Age', '2015', '2016', '2017', '2018'.
Is there any efficient way of doing so (with lambda function)?
python pandas lambda multiple-columns rename
I have pandas df with certain column names. The column names are as below,
u'Kanta/City', u'Aluepaso/Regional Level', u'Akue/District', u'Seotukartakudi/Map code', u'k�/Age', u'2015', u'2016', u'2017', u'2018'.
What I would like to do is, rename the columns in one line of code as below,
'City', 'Regional_Level', 'District', 'Map_Code', 'Age', '2015', '2016', '2017', '2018'.
Is there any efficient way of doing so (with lambda function)?
python pandas lambda multiple-columns rename
python pandas lambda multiple-columns rename
edited Nov 22 '18 at 11:05
Mohit Motwani
1,2571422
1,2571422
asked Nov 22 '18 at 10:31
Kripalu SarKripalu Sar
327
327
@ Kripalu Sar what you should do when someone answers your question must learn!
– pygo
Nov 23 '18 at 19:22
add a comment |
@ Kripalu Sar what you should do when someone answers your question must learn!
– pygo
Nov 23 '18 at 19:22
@ Kripalu Sar what you should do when someone answers your question must learn!
– pygo
Nov 23 '18 at 19:22
@ Kripalu Sar what you should do when someone answers your question must learn!
– pygo
Nov 23 '18 at 19:22
add a comment |
2 Answers
2
active
oldest
votes
Using lambda:
df.rename(columns=lambda x: x.split('/')[1].replace(' ','_') if '/' in x else x, inplace= True)
df.columns
> Index(['City', 'Regional_Level', 'District', 'Map_code', 'Age', '2015', '2016',
'2017', '2018'],
dtype='object')
add a comment |
Simplest will be with using replace
using regex.
>>> df
Empty DataFrame
Columns: [Kanta/City, Aluepaso/Regional Level, Akue/District, Seotukartakudi/Map code, k�/Age, 2015, 2016, 2017, 2018]
Index:
>>> df.columns.str.replace('.*[\/]', '')
Index(['City', 'Regional Level', 'District', 'Map code', 'Age', '2015', '2016',
'2017', '2018'],
dtype='object')
Regex explanation:
.*
matches any character (except for line terminators)
*
Quantifier — Matches between zero and unlimited times, as many times as possible, giving back as needed (greedy)
Match a single character present in the list below
[\/]
\
matches the characterliterally (case sensitive)
/
matches the character/
literally (case sensitive)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53428915%2fremoving-unwanted-characters-and-editing-column-names-in-pandas%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Using lambda:
df.rename(columns=lambda x: x.split('/')[1].replace(' ','_') if '/' in x else x, inplace= True)
df.columns
> Index(['City', 'Regional_Level', 'District', 'Map_code', 'Age', '2015', '2016',
'2017', '2018'],
dtype='object')
add a comment |
Using lambda:
df.rename(columns=lambda x: x.split('/')[1].replace(' ','_') if '/' in x else x, inplace= True)
df.columns
> Index(['City', 'Regional_Level', 'District', 'Map_code', 'Age', '2015', '2016',
'2017', '2018'],
dtype='object')
add a comment |
Using lambda:
df.rename(columns=lambda x: x.split('/')[1].replace(' ','_') if '/' in x else x, inplace= True)
df.columns
> Index(['City', 'Regional_Level', 'District', 'Map_code', 'Age', '2015', '2016',
'2017', '2018'],
dtype='object')
Using lambda:
df.rename(columns=lambda x: x.split('/')[1].replace(' ','_') if '/' in x else x, inplace= True)
df.columns
> Index(['City', 'Regional_Level', 'District', 'Map_code', 'Age', '2015', '2016',
'2017', '2018'],
dtype='object')
answered Nov 22 '18 at 10:35
Mohit MotwaniMohit Motwani
1,2571422
1,2571422
add a comment |
add a comment |
Simplest will be with using replace
using regex.
>>> df
Empty DataFrame
Columns: [Kanta/City, Aluepaso/Regional Level, Akue/District, Seotukartakudi/Map code, k�/Age, 2015, 2016, 2017, 2018]
Index:
>>> df.columns.str.replace('.*[\/]', '')
Index(['City', 'Regional Level', 'District', 'Map code', 'Age', '2015', '2016',
'2017', '2018'],
dtype='object')
Regex explanation:
.*
matches any character (except for line terminators)
*
Quantifier — Matches between zero and unlimited times, as many times as possible, giving back as needed (greedy)
Match a single character present in the list below
[\/]
\
matches the characterliterally (case sensitive)
/
matches the character/
literally (case sensitive)
add a comment |
Simplest will be with using replace
using regex.
>>> df
Empty DataFrame
Columns: [Kanta/City, Aluepaso/Regional Level, Akue/District, Seotukartakudi/Map code, k�/Age, 2015, 2016, 2017, 2018]
Index:
>>> df.columns.str.replace('.*[\/]', '')
Index(['City', 'Regional Level', 'District', 'Map code', 'Age', '2015', '2016',
'2017', '2018'],
dtype='object')
Regex explanation:
.*
matches any character (except for line terminators)
*
Quantifier — Matches between zero and unlimited times, as many times as possible, giving back as needed (greedy)
Match a single character present in the list below
[\/]
\
matches the characterliterally (case sensitive)
/
matches the character/
literally (case sensitive)
add a comment |
Simplest will be with using replace
using regex.
>>> df
Empty DataFrame
Columns: [Kanta/City, Aluepaso/Regional Level, Akue/District, Seotukartakudi/Map code, k�/Age, 2015, 2016, 2017, 2018]
Index:
>>> df.columns.str.replace('.*[\/]', '')
Index(['City', 'Regional Level', 'District', 'Map code', 'Age', '2015', '2016',
'2017', '2018'],
dtype='object')
Regex explanation:
.*
matches any character (except for line terminators)
*
Quantifier — Matches between zero and unlimited times, as many times as possible, giving back as needed (greedy)
Match a single character present in the list below
[\/]
\
matches the characterliterally (case sensitive)
/
matches the character/
literally (case sensitive)
Simplest will be with using replace
using regex.
>>> df
Empty DataFrame
Columns: [Kanta/City, Aluepaso/Regional Level, Akue/District, Seotukartakudi/Map code, k�/Age, 2015, 2016, 2017, 2018]
Index:
>>> df.columns.str.replace('.*[\/]', '')
Index(['City', 'Regional Level', 'District', 'Map code', 'Age', '2015', '2016',
'2017', '2018'],
dtype='object')
Regex explanation:
.*
matches any character (except for line terminators)
*
Quantifier — Matches between zero and unlimited times, as many times as possible, giving back as needed (greedy)
Match a single character present in the list below
[\/]
\
matches the characterliterally (case sensitive)
/
matches the character/
literally (case sensitive)
edited Nov 22 '18 at 11:32
answered Nov 22 '18 at 11:27
pygopygo
2,5131619
2,5131619
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53428915%2fremoving-unwanted-characters-and-editing-column-names-in-pandas%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
@ Kripalu Sar what you should do when someone answers your question must learn!
– pygo
Nov 23 '18 at 19:22