Finding sum to infinity
$begingroup$
I am trying to find what this value will converge to
$$sum_{n = 1}^{ infty}frac{n^2}{n!}$$
I tried using the Taylor series for $e^x$ but couldn’t figure out how to manipulate it to get the above expression, can someone help me out.
Edit: I have seen the solution, the manipulation required didn’t come to me, is there any resource that you guys can tell me about where I can find/practice more questions like this?
calculus sequences-and-series taylor-expansion
$endgroup$
add a comment |
$begingroup$
I am trying to find what this value will converge to
$$sum_{n = 1}^{ infty}frac{n^2}{n!}$$
I tried using the Taylor series for $e^x$ but couldn’t figure out how to manipulate it to get the above expression, can someone help me out.
Edit: I have seen the solution, the manipulation required didn’t come to me, is there any resource that you guys can tell me about where I can find/practice more questions like this?
calculus sequences-and-series taylor-expansion
$endgroup$
$begingroup$
In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
$endgroup$
– Sangchul Lee
42 mins ago
add a comment |
$begingroup$
I am trying to find what this value will converge to
$$sum_{n = 1}^{ infty}frac{n^2}{n!}$$
I tried using the Taylor series for $e^x$ but couldn’t figure out how to manipulate it to get the above expression, can someone help me out.
Edit: I have seen the solution, the manipulation required didn’t come to me, is there any resource that you guys can tell me about where I can find/practice more questions like this?
calculus sequences-and-series taylor-expansion
$endgroup$
I am trying to find what this value will converge to
$$sum_{n = 1}^{ infty}frac{n^2}{n!}$$
I tried using the Taylor series for $e^x$ but couldn’t figure out how to manipulate it to get the above expression, can someone help me out.
Edit: I have seen the solution, the manipulation required didn’t come to me, is there any resource that you guys can tell me about where I can find/practice more questions like this?
calculus sequences-and-series taylor-expansion
calculus sequences-and-series taylor-expansion
edited 32 mins ago
user601297
asked 53 mins ago
user601297user601297
37519
37519
$begingroup$
In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
$endgroup$
– Sangchul Lee
42 mins ago
add a comment |
$begingroup$
In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
$endgroup$
– Sangchul Lee
42 mins ago
$begingroup$
In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
$endgroup$
– Sangchul Lee
42 mins ago
$begingroup$
In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
$endgroup$
– Sangchul Lee
42 mins ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
One may write
begin{align}
sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
\\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
\\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
end{align}Can you take it from here?
$endgroup$
2
$begingroup$
Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
$endgroup$
– Jimmy Sabater
46 mins ago
$begingroup$
Ok both expressions sum to $e$, i get it, thanks a lot
$endgroup$
– user601297
40 mins ago
add a comment |
$begingroup$
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Taking $d/dx$ on both sides,
$$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
Multiplying both sides by $x$,
$$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
Then taking $d/dx$ on both sides again,
$$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
Then plug in $x=1$:
$$sum_{ngeq1}frac{n^2}{n!}=2e$$
Edit
This is a really neat trick that is widely used. Whenever you see an $n^k$ in the numerator, think applying the $xfrac{d}{dx}$ operator $k$ times. Example:
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Apply $xfrac{d}{dx}$:
$$xe^x=sum_{ngeq1}frac{x}{n!}x^n$$
Apply $xfrac{d}{dx}$:
$$x(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^n$$
The pattern continues:
$$left(xfrac{d}{dx}right)^k[e^x-1]=sum_{ngeq1}frac{n^k}{n!}x^n$$
A similar thing can be done with integration. Example:
Evaluate $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}$$
Start by recalling that (use geometric series)
$$frac1{1+t^2}=sum_{ngeq0}(-1)^nt^{2n}$$
Then integrate both sides from $0$ to $x$ to get
$$arctan x=sum_{ngeq0}frac{(-1)^n}{2n+1}x^{2n+1}$$
integrate both sides from $0$ to $1$ now to produce
$$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}=fracpi4-frac12log2$$
$endgroup$
1
$begingroup$
Amazing, this is exactly what I was looking for
$endgroup$
– user601297
34 mins ago
$begingroup$
@user601297 you are very welcome :)
$endgroup$
– clathratus
32 mins ago
add a comment |
$begingroup$
Just to give a slightly different approach,
$$sum_{n=1}^infty{n^2over n!}=sum_{n=1}^infty{nover(n-1)!}=sum_{m=0}^infty{m+1over m!}=sum_{m=0}^infty{mover m!}+e=sum_{m=1}^infty{mover m!}+e=sum_{m=1}^infty{1over(m-1)!}+e=sum_{k=0}^infty{1over k!}+e=e+e$$
The trick in reading this is to note what changes across each equal sign as you proceed from left to right and understand what justifies the equality for each change.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078955%2ffinding-sum-to-infinity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
One may write
begin{align}
sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
\\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
\\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
end{align}Can you take it from here?
$endgroup$
2
$begingroup$
Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
$endgroup$
– Jimmy Sabater
46 mins ago
$begingroup$
Ok both expressions sum to $e$, i get it, thanks a lot
$endgroup$
– user601297
40 mins ago
add a comment |
$begingroup$
One may write
begin{align}
sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
\\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
\\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
end{align}Can you take it from here?
$endgroup$
2
$begingroup$
Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
$endgroup$
– Jimmy Sabater
46 mins ago
$begingroup$
Ok both expressions sum to $e$, i get it, thanks a lot
$endgroup$
– user601297
40 mins ago
add a comment |
$begingroup$
One may write
begin{align}
sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
\\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
\\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
end{align}Can you take it from here?
$endgroup$
One may write
begin{align}
sum_{n = 1}^{ infty}frac{n^2}{n!}&=sum_{n = 1}^{ infty}frac{n(n-1)+n}{n!}
\\&=sum_{n = 1}^{ infty}frac{n(n-1)}{n!}+sum_{n = 1}^{ infty}frac{n}{n!}
\\&=sum_{n = 2}^{ infty}frac{1}{(n-2)!}+sum_{n = 1}^{ infty}frac{1}{(n-1)!}
end{align}Can you take it from here?
answered 49 mins ago
Olivier OloaOlivier Oloa
108k17176293
108k17176293
2
$begingroup$
Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
$endgroup$
– Jimmy Sabater
46 mins ago
$begingroup$
Ok both expressions sum to $e$, i get it, thanks a lot
$endgroup$
– user601297
40 mins ago
add a comment |
2
$begingroup$
Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
$endgroup$
– Jimmy Sabater
46 mins ago
$begingroup$
Ok both expressions sum to $e$, i get it, thanks a lot
$endgroup$
– user601297
40 mins ago
2
2
$begingroup$
Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
$endgroup$
– Jimmy Sabater
46 mins ago
$begingroup$
Further hints: Since $e^1 = sum_{n=0}^{infty} frac{1}{n!}$, we have $$ sum_{n=2}^{infty} frac{1}{(n-2)!}= 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ and $$ sum_{n=1}^{infty} frac{1}{(n-1)!} = 1 + frac{1}{2} + frac{1}{3!} + .... = sum_{n=0}^{infty} frac{1}{n!} $$ So, ans: $boxed{ 2 mathrm{e} } $
$endgroup$
– Jimmy Sabater
46 mins ago
$begingroup$
Ok both expressions sum to $e$, i get it, thanks a lot
$endgroup$
– user601297
40 mins ago
$begingroup$
Ok both expressions sum to $e$, i get it, thanks a lot
$endgroup$
– user601297
40 mins ago
add a comment |
$begingroup$
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Taking $d/dx$ on both sides,
$$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
Multiplying both sides by $x$,
$$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
Then taking $d/dx$ on both sides again,
$$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
Then plug in $x=1$:
$$sum_{ngeq1}frac{n^2}{n!}=2e$$
Edit
This is a really neat trick that is widely used. Whenever you see an $n^k$ in the numerator, think applying the $xfrac{d}{dx}$ operator $k$ times. Example:
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Apply $xfrac{d}{dx}$:
$$xe^x=sum_{ngeq1}frac{x}{n!}x^n$$
Apply $xfrac{d}{dx}$:
$$x(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^n$$
The pattern continues:
$$left(xfrac{d}{dx}right)^k[e^x-1]=sum_{ngeq1}frac{n^k}{n!}x^n$$
A similar thing can be done with integration. Example:
Evaluate $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}$$
Start by recalling that (use geometric series)
$$frac1{1+t^2}=sum_{ngeq0}(-1)^nt^{2n}$$
Then integrate both sides from $0$ to $x$ to get
$$arctan x=sum_{ngeq0}frac{(-1)^n}{2n+1}x^{2n+1}$$
integrate both sides from $0$ to $1$ now to produce
$$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}=fracpi4-frac12log2$$
$endgroup$
1
$begingroup$
Amazing, this is exactly what I was looking for
$endgroup$
– user601297
34 mins ago
$begingroup$
@user601297 you are very welcome :)
$endgroup$
– clathratus
32 mins ago
add a comment |
$begingroup$
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Taking $d/dx$ on both sides,
$$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
Multiplying both sides by $x$,
$$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
Then taking $d/dx$ on both sides again,
$$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
Then plug in $x=1$:
$$sum_{ngeq1}frac{n^2}{n!}=2e$$
Edit
This is a really neat trick that is widely used. Whenever you see an $n^k$ in the numerator, think applying the $xfrac{d}{dx}$ operator $k$ times. Example:
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Apply $xfrac{d}{dx}$:
$$xe^x=sum_{ngeq1}frac{x}{n!}x^n$$
Apply $xfrac{d}{dx}$:
$$x(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^n$$
The pattern continues:
$$left(xfrac{d}{dx}right)^k[e^x-1]=sum_{ngeq1}frac{n^k}{n!}x^n$$
A similar thing can be done with integration. Example:
Evaluate $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}$$
Start by recalling that (use geometric series)
$$frac1{1+t^2}=sum_{ngeq0}(-1)^nt^{2n}$$
Then integrate both sides from $0$ to $x$ to get
$$arctan x=sum_{ngeq0}frac{(-1)^n}{2n+1}x^{2n+1}$$
integrate both sides from $0$ to $1$ now to produce
$$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}=fracpi4-frac12log2$$
$endgroup$
1
$begingroup$
Amazing, this is exactly what I was looking for
$endgroup$
– user601297
34 mins ago
$begingroup$
@user601297 you are very welcome :)
$endgroup$
– clathratus
32 mins ago
add a comment |
$begingroup$
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Taking $d/dx$ on both sides,
$$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
Multiplying both sides by $x$,
$$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
Then taking $d/dx$ on both sides again,
$$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
Then plug in $x=1$:
$$sum_{ngeq1}frac{n^2}{n!}=2e$$
Edit
This is a really neat trick that is widely used. Whenever you see an $n^k$ in the numerator, think applying the $xfrac{d}{dx}$ operator $k$ times. Example:
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Apply $xfrac{d}{dx}$:
$$xe^x=sum_{ngeq1}frac{x}{n!}x^n$$
Apply $xfrac{d}{dx}$:
$$x(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^n$$
The pattern continues:
$$left(xfrac{d}{dx}right)^k[e^x-1]=sum_{ngeq1}frac{n^k}{n!}x^n$$
A similar thing can be done with integration. Example:
Evaluate $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}$$
Start by recalling that (use geometric series)
$$frac1{1+t^2}=sum_{ngeq0}(-1)^nt^{2n}$$
Then integrate both sides from $0$ to $x$ to get
$$arctan x=sum_{ngeq0}frac{(-1)^n}{2n+1}x^{2n+1}$$
integrate both sides from $0$ to $1$ now to produce
$$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}=fracpi4-frac12log2$$
$endgroup$
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Taking $d/dx$ on both sides,
$$e^x=sum_{ngeq1}frac{n}{n!}x^{n-1}$$
Multiplying both sides by $x$,
$$xe^x=sum_{ngeq1}frac{n}{n!}x^n$$
Then taking $d/dx$ on both sides again,
$$(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^{n-1}$$
Then plug in $x=1$:
$$sum_{ngeq1}frac{n^2}{n!}=2e$$
Edit
This is a really neat trick that is widely used. Whenever you see an $n^k$ in the numerator, think applying the $xfrac{d}{dx}$ operator $k$ times. Example:
$$e^x-1=sum_{ngeq1}frac{x^n}{n!}$$
Apply $xfrac{d}{dx}$:
$$xe^x=sum_{ngeq1}frac{x}{n!}x^n$$
Apply $xfrac{d}{dx}$:
$$x(x+1)e^x=sum_{ngeq1}frac{n^2}{n!}x^n$$
The pattern continues:
$$left(xfrac{d}{dx}right)^k[e^x-1]=sum_{ngeq1}frac{n^k}{n!}x^n$$
A similar thing can be done with integration. Example:
Evaluate $$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}$$
Start by recalling that (use geometric series)
$$frac1{1+t^2}=sum_{ngeq0}(-1)^nt^{2n}$$
Then integrate both sides from $0$ to $x$ to get
$$arctan x=sum_{ngeq0}frac{(-1)^n}{2n+1}x^{2n+1}$$
integrate both sides from $0$ to $1$ now to produce
$$S=sum_{ngeq0}frac{(-1)^n}{(2n+2)(2n+1)}=fracpi4-frac12log2$$
edited 7 mins ago
answered 39 mins ago
clathratusclathratus
3,651332
3,651332
1
$begingroup$
Amazing, this is exactly what I was looking for
$endgroup$
– user601297
34 mins ago
$begingroup$
@user601297 you are very welcome :)
$endgroup$
– clathratus
32 mins ago
add a comment |
1
$begingroup$
Amazing, this is exactly what I was looking for
$endgroup$
– user601297
34 mins ago
$begingroup$
@user601297 you are very welcome :)
$endgroup$
– clathratus
32 mins ago
1
1
$begingroup$
Amazing, this is exactly what I was looking for
$endgroup$
– user601297
34 mins ago
$begingroup$
Amazing, this is exactly what I was looking for
$endgroup$
– user601297
34 mins ago
$begingroup$
@user601297 you are very welcome :)
$endgroup$
– clathratus
32 mins ago
$begingroup$
@user601297 you are very welcome :)
$endgroup$
– clathratus
32 mins ago
add a comment |
$begingroup$
Just to give a slightly different approach,
$$sum_{n=1}^infty{n^2over n!}=sum_{n=1}^infty{nover(n-1)!}=sum_{m=0}^infty{m+1over m!}=sum_{m=0}^infty{mover m!}+e=sum_{m=1}^infty{mover m!}+e=sum_{m=1}^infty{1over(m-1)!}+e=sum_{k=0}^infty{1over k!}+e=e+e$$
The trick in reading this is to note what changes across each equal sign as you proceed from left to right and understand what justifies the equality for each change.
$endgroup$
add a comment |
$begingroup$
Just to give a slightly different approach,
$$sum_{n=1}^infty{n^2over n!}=sum_{n=1}^infty{nover(n-1)!}=sum_{m=0}^infty{m+1over m!}=sum_{m=0}^infty{mover m!}+e=sum_{m=1}^infty{mover m!}+e=sum_{m=1}^infty{1over(m-1)!}+e=sum_{k=0}^infty{1over k!}+e=e+e$$
The trick in reading this is to note what changes across each equal sign as you proceed from left to right and understand what justifies the equality for each change.
$endgroup$
add a comment |
$begingroup$
Just to give a slightly different approach,
$$sum_{n=1}^infty{n^2over n!}=sum_{n=1}^infty{nover(n-1)!}=sum_{m=0}^infty{m+1over m!}=sum_{m=0}^infty{mover m!}+e=sum_{m=1}^infty{mover m!}+e=sum_{m=1}^infty{1over(m-1)!}+e=sum_{k=0}^infty{1over k!}+e=e+e$$
The trick in reading this is to note what changes across each equal sign as you proceed from left to right and understand what justifies the equality for each change.
$endgroup$
Just to give a slightly different approach,
$$sum_{n=1}^infty{n^2over n!}=sum_{n=1}^infty{nover(n-1)!}=sum_{m=0}^infty{m+1over m!}=sum_{m=0}^infty{mover m!}+e=sum_{m=1}^infty{mover m!}+e=sum_{m=1}^infty{1over(m-1)!}+e=sum_{k=0}^infty{1over k!}+e=e+e$$
The trick in reading this is to note what changes across each equal sign as you proceed from left to right and understand what justifies the equality for each change.
answered 22 mins ago
Barry CipraBarry Cipra
59.4k653125
59.4k653125
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078955%2ffinding-sum-to-infinity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
In general, $$ sum_{n=0}^{infty} frac{n^k}{n!} = B_k e, $$ where $B_k$ is the $k$-th Bell-number. This is called the Dobinski's formula. This can be computed by expanding $n^k$ into the sum of falling factorials as in Olivier Oloa's answer.
$endgroup$
– Sangchul Lee
42 mins ago