Examples of Mathematical Papers that Contain a Kind of Research Report












45














What are examples of well received mathematical papers in which the author provides detail on how a surprising solution to a problem has been found.



I am especially looking for papers that also document the dead ends of investigation, i.e. ideas that seemed promising but lead nowhere, and where the motivation and inspiration that lead to the right ideas came from.



By "surprising solution" I mean solutions that feel right at first reading and it isn't clear why they haven't been found earlier.










share|cite|improve this question




















  • 31




    A long time ago, a referee asked for more information on how we had gone about finding the solution to the problem. We added half a page on that. Then we got a new report saying "the authors carry on like they solved the Riemann Hypothesis".
    – Brendan McKay
    Nov 21 at 10:15






  • 18




    @BrendanMcKay its too sad that it seems to be imperative in mathematics to keep up the impression mathematicians don't experience emotions when doing research; no wonder that mathematics is judged as dry and the most undesirable thing to do.
    – Manfred Weis
    Nov 21 at 10:26






  • 8




    I'm surprised JR Stallings' paper "How Not To Prove The Poincaré Conjecture" has not yet been mentioned.
    – Sam Hopkins
    Nov 21 at 16:15






  • 5




    Not a paper, but Villani's "Birth of a Theorem" does that kind of thing in detail.
    – Piyush Grover
    Nov 21 at 17:17






  • 5




    Dirac in Recollections of an exciting era (1977) recounts how he came up with his matrices while trying to “take the square root of a sum of four squares”.
    – Francois Ziegler
    Nov 21 at 18:40
















45














What are examples of well received mathematical papers in which the author provides detail on how a surprising solution to a problem has been found.



I am especially looking for papers that also document the dead ends of investigation, i.e. ideas that seemed promising but lead nowhere, and where the motivation and inspiration that lead to the right ideas came from.



By "surprising solution" I mean solutions that feel right at first reading and it isn't clear why they haven't been found earlier.










share|cite|improve this question




















  • 31




    A long time ago, a referee asked for more information on how we had gone about finding the solution to the problem. We added half a page on that. Then we got a new report saying "the authors carry on like they solved the Riemann Hypothesis".
    – Brendan McKay
    Nov 21 at 10:15






  • 18




    @BrendanMcKay its too sad that it seems to be imperative in mathematics to keep up the impression mathematicians don't experience emotions when doing research; no wonder that mathematics is judged as dry and the most undesirable thing to do.
    – Manfred Weis
    Nov 21 at 10:26






  • 8




    I'm surprised JR Stallings' paper "How Not To Prove The Poincaré Conjecture" has not yet been mentioned.
    – Sam Hopkins
    Nov 21 at 16:15






  • 5




    Not a paper, but Villani's "Birth of a Theorem" does that kind of thing in detail.
    – Piyush Grover
    Nov 21 at 17:17






  • 5




    Dirac in Recollections of an exciting era (1977) recounts how he came up with his matrices while trying to “take the square root of a sum of four squares”.
    – Francois Ziegler
    Nov 21 at 18:40














45












45








45


23





What are examples of well received mathematical papers in which the author provides detail on how a surprising solution to a problem has been found.



I am especially looking for papers that also document the dead ends of investigation, i.e. ideas that seemed promising but lead nowhere, and where the motivation and inspiration that lead to the right ideas came from.



By "surprising solution" I mean solutions that feel right at first reading and it isn't clear why they haven't been found earlier.










share|cite|improve this question















What are examples of well received mathematical papers in which the author provides detail on how a surprising solution to a problem has been found.



I am especially looking for papers that also document the dead ends of investigation, i.e. ideas that seemed promising but lead nowhere, and where the motivation and inspiration that lead to the right ideas came from.



By "surprising solution" I mean solutions that feel right at first reading and it isn't clear why they haven't been found earlier.







mathematical-writing






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








asked Nov 21 at 7:25


























community wiki





Manfred Weis









  • 31




    A long time ago, a referee asked for more information on how we had gone about finding the solution to the problem. We added half a page on that. Then we got a new report saying "the authors carry on like they solved the Riemann Hypothesis".
    – Brendan McKay
    Nov 21 at 10:15






  • 18




    @BrendanMcKay its too sad that it seems to be imperative in mathematics to keep up the impression mathematicians don't experience emotions when doing research; no wonder that mathematics is judged as dry and the most undesirable thing to do.
    – Manfred Weis
    Nov 21 at 10:26






  • 8




    I'm surprised JR Stallings' paper "How Not To Prove The Poincaré Conjecture" has not yet been mentioned.
    – Sam Hopkins
    Nov 21 at 16:15






  • 5




    Not a paper, but Villani's "Birth of a Theorem" does that kind of thing in detail.
    – Piyush Grover
    Nov 21 at 17:17






  • 5




    Dirac in Recollections of an exciting era (1977) recounts how he came up with his matrices while trying to “take the square root of a sum of four squares”.
    – Francois Ziegler
    Nov 21 at 18:40














  • 31




    A long time ago, a referee asked for more information on how we had gone about finding the solution to the problem. We added half a page on that. Then we got a new report saying "the authors carry on like they solved the Riemann Hypothesis".
    – Brendan McKay
    Nov 21 at 10:15






  • 18




    @BrendanMcKay its too sad that it seems to be imperative in mathematics to keep up the impression mathematicians don't experience emotions when doing research; no wonder that mathematics is judged as dry and the most undesirable thing to do.
    – Manfred Weis
    Nov 21 at 10:26






  • 8




    I'm surprised JR Stallings' paper "How Not To Prove The Poincaré Conjecture" has not yet been mentioned.
    – Sam Hopkins
    Nov 21 at 16:15






  • 5




    Not a paper, but Villani's "Birth of a Theorem" does that kind of thing in detail.
    – Piyush Grover
    Nov 21 at 17:17






  • 5




    Dirac in Recollections of an exciting era (1977) recounts how he came up with his matrices while trying to “take the square root of a sum of four squares”.
    – Francois Ziegler
    Nov 21 at 18:40








31




31




A long time ago, a referee asked for more information on how we had gone about finding the solution to the problem. We added half a page on that. Then we got a new report saying "the authors carry on like they solved the Riemann Hypothesis".
– Brendan McKay
Nov 21 at 10:15




A long time ago, a referee asked for more information on how we had gone about finding the solution to the problem. We added half a page on that. Then we got a new report saying "the authors carry on like they solved the Riemann Hypothesis".
– Brendan McKay
Nov 21 at 10:15




18




18




@BrendanMcKay its too sad that it seems to be imperative in mathematics to keep up the impression mathematicians don't experience emotions when doing research; no wonder that mathematics is judged as dry and the most undesirable thing to do.
– Manfred Weis
Nov 21 at 10:26




@BrendanMcKay its too sad that it seems to be imperative in mathematics to keep up the impression mathematicians don't experience emotions when doing research; no wonder that mathematics is judged as dry and the most undesirable thing to do.
– Manfred Weis
Nov 21 at 10:26




8




8




I'm surprised JR Stallings' paper "How Not To Prove The Poincaré Conjecture" has not yet been mentioned.
– Sam Hopkins
Nov 21 at 16:15




I'm surprised JR Stallings' paper "How Not To Prove The Poincaré Conjecture" has not yet been mentioned.
– Sam Hopkins
Nov 21 at 16:15




5




5




Not a paper, but Villani's "Birth of a Theorem" does that kind of thing in detail.
– Piyush Grover
Nov 21 at 17:17




Not a paper, but Villani's "Birth of a Theorem" does that kind of thing in detail.
– Piyush Grover
Nov 21 at 17:17




5




5




Dirac in Recollections of an exciting era (1977) recounts how he came up with his matrices while trying to “take the square root of a sum of four squares”.
– Francois Ziegler
Nov 21 at 18:40




Dirac in Recollections of an exciting era (1977) recounts how he came up with his matrices while trying to “take the square root of a sum of four squares”.
– Francois Ziegler
Nov 21 at 18:40










9 Answers
9






active

oldest

votes


















31














Richard P. Stanley's How the Upper Bound Conjecture was proved ends with two morals:





  1. The shortest path may not be the best.

  2. Even if you don’t arrive at your destination, the journey can still be
    worthwhile.







share|cite|improve this answer



















  • 4




    These kind of papers surely deserve more awareness and should be recommended to novices to mathematical research.
    – Manfred Weis
    Nov 21 at 8:17






  • 1




    @DavidRicherby Looking at your edit, I should probably mention that the picture is mostly my fault. For a more detailed explanation, see here.
    – Martin Sleziak
    Nov 21 at 21:33










  • @MartinSleziak Ah. Makes sense, now. I didn't look at the edit history before removing it.
    – David Richerby
    Nov 21 at 21:35





















21














The paper




Rawnsley, John; Schmid, Wilfried; Wolf, Joseph A., Singular unitary representations and indefinite harmonic theory, J. Funct. Anal. 51, 1-114 (1983). ZBL0511.22005.




contains an unusual “Historical Note” (pp. 102–107). E.g.:




For various reasons one expects to get $mu_n$ by... That does not work directly because... In 1975, S & W tried... At that point it became clear that an intrinsic higher $L_2$ cohomology theory was needed... In 1977, R & W looked... They did not see how to... This was the point at which S & W had been stopped... During the following academic year B succeeded in... but the method did not extend past... R & W made some progress in... These results were not published formally because... During the summer of 1979, S & W discussed the apparent disparity and clarified... then carried out a computation... then looked at the case... Thus the original S & W problem was settled... At the end of the summer of 1980, S & W saw that... could be simplified... The present version was completed in... There are two important parallel developments which we understood only after... (etc.)







share|cite|improve this answer































    11














    The prime example is Euler's papers. This style is out of fashion in 20th century.
    Polya in Mathematics and Plausible reasoning discusses this question at length and
    even reproduces completely (in English) one of Euler's papers (on partitions).



    Of the 20th century examples I can mention



    MR1555091 Malmquist, J. Sur les fonctions a un nombre fini de branches définies par les équations différentielles du premier ordre. Acta Math. 36 (1913), no. 1, 297–343.






    share|cite|improve this answer































      10














      Ryan Williams provides a Casual Tour Around a Circuit Complexity Bound (the bound in question being that NEXP lacks nonuniform polysized ACC circuits) which may fit the bill, although I believe that Williams's goal is to give a motivated exposition rather than a 100% historically accurate account of how he came up with his proof.






      share|cite|improve this answer































        9














        A nice example is the article "The method of undetermined generalization and specialization, illustrated with Fred Galvin's amazing proof of the Dinitz Conjecture" by Doron Zeilberger in Amer. Math. Monthly 103, no. 3, 233-239, 1996 (see also here for a freely accessible version).






        share|cite|improve this answer































          8














          The first example that came to mind was




          MR0270881 (42 #5764) van der Waerden, B. L. How the proof of Baudet's conjecture was found. 1971 Studies in Pure Mathematics (Presented to Richard Rado) pp. 251–260 Academic Press, London.




          There, van der Waerden describes some of the history as well as his proof of his well-known theorem.



          Another example:




          MR2245898 (2007j:05091) Seymour, Paul. How the proof of the strong perfect graph conjecture was found. Gaz. Math. No. 109 (2006), 69–83.




          From Wilson's review in Mathematical Reviews: "In this interesting and revealing paper, Seymour describes in graphic terms their assaults on the problem, the difficulties they came across, and the means they used to overcome these difficulties."






          share|cite|improve this answer































            5














            I think David Hayes article "The Partial Zeta Functions of a Real Quadratic Number Field Evaluated at $s=0$" fits here. First, the result is kind of surprising and, a priori, unexpected. Also, he explains the motivation that led him to his result. Finally, he explains why his approach works and why another approach did not work for him.






            share|cite|improve this answer































              4














              Another type of example. Textbooks on non-Euclidean geometry may often begin with a chapter on historical failed attempts to prove the Parallel Postulate.






              share|cite|improve this answer































                1














                I enjoy The genesis of the Macdonald polynomial statistics, complete with journal entries, and detailed descriptions of the experimental method.



                This paper describes how the researchers came up with a nice formula for the combinatorial (aka modified) Macdonald polynomials.






                share|cite|improve this answer























                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "504"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f315843%2fexamples-of-mathematical-papers-that-contain-a-kind-of-research-report%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  9 Answers
                  9






                  active

                  oldest

                  votes








                  9 Answers
                  9






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  31














                  Richard P. Stanley's How the Upper Bound Conjecture was proved ends with two morals:





                  1. The shortest path may not be the best.

                  2. Even if you don’t arrive at your destination, the journey can still be
                    worthwhile.







                  share|cite|improve this answer



















                  • 4




                    These kind of papers surely deserve more awareness and should be recommended to novices to mathematical research.
                    – Manfred Weis
                    Nov 21 at 8:17






                  • 1




                    @DavidRicherby Looking at your edit, I should probably mention that the picture is mostly my fault. For a more detailed explanation, see here.
                    – Martin Sleziak
                    Nov 21 at 21:33










                  • @MartinSleziak Ah. Makes sense, now. I didn't look at the edit history before removing it.
                    – David Richerby
                    Nov 21 at 21:35


















                  31














                  Richard P. Stanley's How the Upper Bound Conjecture was proved ends with two morals:





                  1. The shortest path may not be the best.

                  2. Even if you don’t arrive at your destination, the journey can still be
                    worthwhile.







                  share|cite|improve this answer



















                  • 4




                    These kind of papers surely deserve more awareness and should be recommended to novices to mathematical research.
                    – Manfred Weis
                    Nov 21 at 8:17






                  • 1




                    @DavidRicherby Looking at your edit, I should probably mention that the picture is mostly my fault. For a more detailed explanation, see here.
                    – Martin Sleziak
                    Nov 21 at 21:33










                  • @MartinSleziak Ah. Makes sense, now. I didn't look at the edit history before removing it.
                    – David Richerby
                    Nov 21 at 21:35
















                  31












                  31








                  31






                  Richard P. Stanley's How the Upper Bound Conjecture was proved ends with two morals:





                  1. The shortest path may not be the best.

                  2. Even if you don’t arrive at your destination, the journey can still be
                    worthwhile.







                  share|cite|improve this answer














                  Richard P. Stanley's How the Upper Bound Conjecture was proved ends with two morals:





                  1. The shortest path may not be the best.

                  2. Even if you don’t arrive at your destination, the journey can still be
                    worthwhile.








                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Nov 21 at 17:11


























                  community wiki





                  4 revs, 2 users 87%
                  Bjørn Kjos-Hanssen









                  • 4




                    These kind of papers surely deserve more awareness and should be recommended to novices to mathematical research.
                    – Manfred Weis
                    Nov 21 at 8:17






                  • 1




                    @DavidRicherby Looking at your edit, I should probably mention that the picture is mostly my fault. For a more detailed explanation, see here.
                    – Martin Sleziak
                    Nov 21 at 21:33










                  • @MartinSleziak Ah. Makes sense, now. I didn't look at the edit history before removing it.
                    – David Richerby
                    Nov 21 at 21:35
















                  • 4




                    These kind of papers surely deserve more awareness and should be recommended to novices to mathematical research.
                    – Manfred Weis
                    Nov 21 at 8:17






                  • 1




                    @DavidRicherby Looking at your edit, I should probably mention that the picture is mostly my fault. For a more detailed explanation, see here.
                    – Martin Sleziak
                    Nov 21 at 21:33










                  • @MartinSleziak Ah. Makes sense, now. I didn't look at the edit history before removing it.
                    – David Richerby
                    Nov 21 at 21:35










                  4




                  4




                  These kind of papers surely deserve more awareness and should be recommended to novices to mathematical research.
                  – Manfred Weis
                  Nov 21 at 8:17




                  These kind of papers surely deserve more awareness and should be recommended to novices to mathematical research.
                  – Manfred Weis
                  Nov 21 at 8:17




                  1




                  1




                  @DavidRicherby Looking at your edit, I should probably mention that the picture is mostly my fault. For a more detailed explanation, see here.
                  – Martin Sleziak
                  Nov 21 at 21:33




                  @DavidRicherby Looking at your edit, I should probably mention that the picture is mostly my fault. For a more detailed explanation, see here.
                  – Martin Sleziak
                  Nov 21 at 21:33












                  @MartinSleziak Ah. Makes sense, now. I didn't look at the edit history before removing it.
                  – David Richerby
                  Nov 21 at 21:35






                  @MartinSleziak Ah. Makes sense, now. I didn't look at the edit history before removing it.
                  – David Richerby
                  Nov 21 at 21:35













                  21














                  The paper




                  Rawnsley, John; Schmid, Wilfried; Wolf, Joseph A., Singular unitary representations and indefinite harmonic theory, J. Funct. Anal. 51, 1-114 (1983). ZBL0511.22005.




                  contains an unusual “Historical Note” (pp. 102–107). E.g.:




                  For various reasons one expects to get $mu_n$ by... That does not work directly because... In 1975, S & W tried... At that point it became clear that an intrinsic higher $L_2$ cohomology theory was needed... In 1977, R & W looked... They did not see how to... This was the point at which S & W had been stopped... During the following academic year B succeeded in... but the method did not extend past... R & W made some progress in... These results were not published formally because... During the summer of 1979, S & W discussed the apparent disparity and clarified... then carried out a computation... then looked at the case... Thus the original S & W problem was settled... At the end of the summer of 1980, S & W saw that... could be simplified... The present version was completed in... There are two important parallel developments which we understood only after... (etc.)







                  share|cite|improve this answer




























                    21














                    The paper




                    Rawnsley, John; Schmid, Wilfried; Wolf, Joseph A., Singular unitary representations and indefinite harmonic theory, J. Funct. Anal. 51, 1-114 (1983). ZBL0511.22005.




                    contains an unusual “Historical Note” (pp. 102–107). E.g.:




                    For various reasons one expects to get $mu_n$ by... That does not work directly because... In 1975, S & W tried... At that point it became clear that an intrinsic higher $L_2$ cohomology theory was needed... In 1977, R & W looked... They did not see how to... This was the point at which S & W had been stopped... During the following academic year B succeeded in... but the method did not extend past... R & W made some progress in... These results were not published formally because... During the summer of 1979, S & W discussed the apparent disparity and clarified... then carried out a computation... then looked at the case... Thus the original S & W problem was settled... At the end of the summer of 1980, S & W saw that... could be simplified... The present version was completed in... There are two important parallel developments which we understood only after... (etc.)







                    share|cite|improve this answer


























                      21












                      21








                      21






                      The paper




                      Rawnsley, John; Schmid, Wilfried; Wolf, Joseph A., Singular unitary representations and indefinite harmonic theory, J. Funct. Anal. 51, 1-114 (1983). ZBL0511.22005.




                      contains an unusual “Historical Note” (pp. 102–107). E.g.:




                      For various reasons one expects to get $mu_n$ by... That does not work directly because... In 1975, S & W tried... At that point it became clear that an intrinsic higher $L_2$ cohomology theory was needed... In 1977, R & W looked... They did not see how to... This was the point at which S & W had been stopped... During the following academic year B succeeded in... but the method did not extend past... R & W made some progress in... These results were not published formally because... During the summer of 1979, S & W discussed the apparent disparity and clarified... then carried out a computation... then looked at the case... Thus the original S & W problem was settled... At the end of the summer of 1980, S & W saw that... could be simplified... The present version was completed in... There are two important parallel developments which we understood only after... (etc.)







                      share|cite|improve this answer














                      The paper




                      Rawnsley, John; Schmid, Wilfried; Wolf, Joseph A., Singular unitary representations and indefinite harmonic theory, J. Funct. Anal. 51, 1-114 (1983). ZBL0511.22005.




                      contains an unusual “Historical Note” (pp. 102–107). E.g.:




                      For various reasons one expects to get $mu_n$ by... That does not work directly because... In 1975, S & W tried... At that point it became clear that an intrinsic higher $L_2$ cohomology theory was needed... In 1977, R & W looked... They did not see how to... This was the point at which S & W had been stopped... During the following academic year B succeeded in... but the method did not extend past... R & W made some progress in... These results were not published formally because... During the summer of 1979, S & W discussed the apparent disparity and clarified... then carried out a computation... then looked at the case... Thus the original S & W problem was settled... At the end of the summer of 1980, S & W saw that... could be simplified... The present version was completed in... There are two important parallel developments which we understood only after... (etc.)








                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      answered Nov 21 at 12:00


























                      community wiki





                      Francois Ziegler
























                          11














                          The prime example is Euler's papers. This style is out of fashion in 20th century.
                          Polya in Mathematics and Plausible reasoning discusses this question at length and
                          even reproduces completely (in English) one of Euler's papers (on partitions).



                          Of the 20th century examples I can mention



                          MR1555091 Malmquist, J. Sur les fonctions a un nombre fini de branches définies par les équations différentielles du premier ordre. Acta Math. 36 (1913), no. 1, 297–343.






                          share|cite|improve this answer




























                            11














                            The prime example is Euler's papers. This style is out of fashion in 20th century.
                            Polya in Mathematics and Plausible reasoning discusses this question at length and
                            even reproduces completely (in English) one of Euler's papers (on partitions).



                            Of the 20th century examples I can mention



                            MR1555091 Malmquist, J. Sur les fonctions a un nombre fini de branches définies par les équations différentielles du premier ordre. Acta Math. 36 (1913), no. 1, 297–343.






                            share|cite|improve this answer


























                              11












                              11








                              11






                              The prime example is Euler's papers. This style is out of fashion in 20th century.
                              Polya in Mathematics and Plausible reasoning discusses this question at length and
                              even reproduces completely (in English) one of Euler's papers (on partitions).



                              Of the 20th century examples I can mention



                              MR1555091 Malmquist, J. Sur les fonctions a un nombre fini de branches définies par les équations différentielles du premier ordre. Acta Math. 36 (1913), no. 1, 297–343.






                              share|cite|improve this answer














                              The prime example is Euler's papers. This style is out of fashion in 20th century.
                              Polya in Mathematics and Plausible reasoning discusses this question at length and
                              even reproduces completely (in English) one of Euler's papers (on partitions).



                              Of the 20th century examples I can mention



                              MR1555091 Malmquist, J. Sur les fonctions a un nombre fini de branches définies par les équations différentielles du premier ordre. Acta Math. 36 (1913), no. 1, 297–343.







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Nov 21 at 16:22


























                              community wiki





                              2 revs, 2 users 92%
                              Alexandre Eremenko
























                                  10














                                  Ryan Williams provides a Casual Tour Around a Circuit Complexity Bound (the bound in question being that NEXP lacks nonuniform polysized ACC circuits) which may fit the bill, although I believe that Williams's goal is to give a motivated exposition rather than a 100% historically accurate account of how he came up with his proof.






                                  share|cite|improve this answer




























                                    10














                                    Ryan Williams provides a Casual Tour Around a Circuit Complexity Bound (the bound in question being that NEXP lacks nonuniform polysized ACC circuits) which may fit the bill, although I believe that Williams's goal is to give a motivated exposition rather than a 100% historically accurate account of how he came up with his proof.






                                    share|cite|improve this answer


























                                      10












                                      10








                                      10






                                      Ryan Williams provides a Casual Tour Around a Circuit Complexity Bound (the bound in question being that NEXP lacks nonuniform polysized ACC circuits) which may fit the bill, although I believe that Williams's goal is to give a motivated exposition rather than a 100% historically accurate account of how he came up with his proof.






                                      share|cite|improve this answer














                                      Ryan Williams provides a Casual Tour Around a Circuit Complexity Bound (the bound in question being that NEXP lacks nonuniform polysized ACC circuits) which may fit the bill, although I believe that Williams's goal is to give a motivated exposition rather than a 100% historically accurate account of how he came up with his proof.







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      answered Nov 21 at 18:24


























                                      community wiki





                                      Timothy Chow
























                                          9














                                          A nice example is the article "The method of undetermined generalization and specialization, illustrated with Fred Galvin's amazing proof of the Dinitz Conjecture" by Doron Zeilberger in Amer. Math. Monthly 103, no. 3, 233-239, 1996 (see also here for a freely accessible version).






                                          share|cite|improve this answer




























                                            9














                                            A nice example is the article "The method of undetermined generalization and specialization, illustrated with Fred Galvin's amazing proof of the Dinitz Conjecture" by Doron Zeilberger in Amer. Math. Monthly 103, no. 3, 233-239, 1996 (see also here for a freely accessible version).






                                            share|cite|improve this answer


























                                              9












                                              9








                                              9






                                              A nice example is the article "The method of undetermined generalization and specialization, illustrated with Fred Galvin's amazing proof of the Dinitz Conjecture" by Doron Zeilberger in Amer. Math. Monthly 103, no. 3, 233-239, 1996 (see also here for a freely accessible version).






                                              share|cite|improve this answer














                                              A nice example is the article "The method of undetermined generalization and specialization, illustrated with Fred Galvin's amazing proof of the Dinitz Conjecture" by Doron Zeilberger in Amer. Math. Monthly 103, no. 3, 233-239, 1996 (see also here for a freely accessible version).







                                              share|cite|improve this answer














                                              share|cite|improve this answer



                                              share|cite|improve this answer








                                              edited Nov 22 at 16:18


























                                              community wiki





                                              2 revs, 2 users 67%
                                              Abdelmalek Abdesselam
























                                                  8














                                                  The first example that came to mind was




                                                  MR0270881 (42 #5764) van der Waerden, B. L. How the proof of Baudet's conjecture was found. 1971 Studies in Pure Mathematics (Presented to Richard Rado) pp. 251–260 Academic Press, London.




                                                  There, van der Waerden describes some of the history as well as his proof of his well-known theorem.



                                                  Another example:




                                                  MR2245898 (2007j:05091) Seymour, Paul. How the proof of the strong perfect graph conjecture was found. Gaz. Math. No. 109 (2006), 69–83.




                                                  From Wilson's review in Mathematical Reviews: "In this interesting and revealing paper, Seymour describes in graphic terms their assaults on the problem, the difficulties they came across, and the means they used to overcome these difficulties."






                                                  share|cite|improve this answer




























                                                    8














                                                    The first example that came to mind was




                                                    MR0270881 (42 #5764) van der Waerden, B. L. How the proof of Baudet's conjecture was found. 1971 Studies in Pure Mathematics (Presented to Richard Rado) pp. 251–260 Academic Press, London.




                                                    There, van der Waerden describes some of the history as well as his proof of his well-known theorem.



                                                    Another example:




                                                    MR2245898 (2007j:05091) Seymour, Paul. How the proof of the strong perfect graph conjecture was found. Gaz. Math. No. 109 (2006), 69–83.




                                                    From Wilson's review in Mathematical Reviews: "In this interesting and revealing paper, Seymour describes in graphic terms their assaults on the problem, the difficulties they came across, and the means they used to overcome these difficulties."






                                                    share|cite|improve this answer


























                                                      8












                                                      8








                                                      8






                                                      The first example that came to mind was




                                                      MR0270881 (42 #5764) van der Waerden, B. L. How the proof of Baudet's conjecture was found. 1971 Studies in Pure Mathematics (Presented to Richard Rado) pp. 251–260 Academic Press, London.




                                                      There, van der Waerden describes some of the history as well as his proof of his well-known theorem.



                                                      Another example:




                                                      MR2245898 (2007j:05091) Seymour, Paul. How the proof of the strong perfect graph conjecture was found. Gaz. Math. No. 109 (2006), 69–83.




                                                      From Wilson's review in Mathematical Reviews: "In this interesting and revealing paper, Seymour describes in graphic terms their assaults on the problem, the difficulties they came across, and the means they used to overcome these difficulties."






                                                      share|cite|improve this answer














                                                      The first example that came to mind was




                                                      MR0270881 (42 #5764) van der Waerden, B. L. How the proof of Baudet's conjecture was found. 1971 Studies in Pure Mathematics (Presented to Richard Rado) pp. 251–260 Academic Press, London.




                                                      There, van der Waerden describes some of the history as well as his proof of his well-known theorem.



                                                      Another example:




                                                      MR2245898 (2007j:05091) Seymour, Paul. How the proof of the strong perfect graph conjecture was found. Gaz. Math. No. 109 (2006), 69–83.




                                                      From Wilson's review in Mathematical Reviews: "In this interesting and revealing paper, Seymour describes in graphic terms their assaults on the problem, the difficulties they came across, and the means they used to overcome these difficulties."







                                                      share|cite|improve this answer














                                                      share|cite|improve this answer



                                                      share|cite|improve this answer








                                                      answered Nov 21 at 15:02


























                                                      community wiki





                                                      Andrés E. Caicedo
























                                                          5














                                                          I think David Hayes article "The Partial Zeta Functions of a Real Quadratic Number Field Evaluated at $s=0$" fits here. First, the result is kind of surprising and, a priori, unexpected. Also, he explains the motivation that led him to his result. Finally, he explains why his approach works and why another approach did not work for him.






                                                          share|cite|improve this answer




























                                                            5














                                                            I think David Hayes article "The Partial Zeta Functions of a Real Quadratic Number Field Evaluated at $s=0$" fits here. First, the result is kind of surprising and, a priori, unexpected. Also, he explains the motivation that led him to his result. Finally, he explains why his approach works and why another approach did not work for him.






                                                            share|cite|improve this answer


























                                                              5












                                                              5








                                                              5






                                                              I think David Hayes article "The Partial Zeta Functions of a Real Quadratic Number Field Evaluated at $s=0$" fits here. First, the result is kind of surprising and, a priori, unexpected. Also, he explains the motivation that led him to his result. Finally, he explains why his approach works and why another approach did not work for him.






                                                              share|cite|improve this answer














                                                              I think David Hayes article "The Partial Zeta Functions of a Real Quadratic Number Field Evaluated at $s=0$" fits here. First, the result is kind of surprising and, a priori, unexpected. Also, he explains the motivation that led him to his result. Finally, he explains why his approach works and why another approach did not work for him.







                                                              share|cite|improve this answer














                                                              share|cite|improve this answer



                                                              share|cite|improve this answer








                                                              edited Nov 22 at 16:21


























                                                              community wiki





                                                              2 revs, 2 users 67%
                                                              EFinat-S
























                                                                  4














                                                                  Another type of example. Textbooks on non-Euclidean geometry may often begin with a chapter on historical failed attempts to prove the Parallel Postulate.






                                                                  share|cite|improve this answer




























                                                                    4














                                                                    Another type of example. Textbooks on non-Euclidean geometry may often begin with a chapter on historical failed attempts to prove the Parallel Postulate.






                                                                    share|cite|improve this answer


























                                                                      4












                                                                      4








                                                                      4






                                                                      Another type of example. Textbooks on non-Euclidean geometry may often begin with a chapter on historical failed attempts to prove the Parallel Postulate.






                                                                      share|cite|improve this answer














                                                                      Another type of example. Textbooks on non-Euclidean geometry may often begin with a chapter on historical failed attempts to prove the Parallel Postulate.







                                                                      share|cite|improve this answer














                                                                      share|cite|improve this answer



                                                                      share|cite|improve this answer








                                                                      answered Nov 21 at 18:14


























                                                                      community wiki





                                                                      Gerald Edgar
























                                                                          1














                                                                          I enjoy The genesis of the Macdonald polynomial statistics, complete with journal entries, and detailed descriptions of the experimental method.



                                                                          This paper describes how the researchers came up with a nice formula for the combinatorial (aka modified) Macdonald polynomials.






                                                                          share|cite|improve this answer




























                                                                            1














                                                                            I enjoy The genesis of the Macdonald polynomial statistics, complete with journal entries, and detailed descriptions of the experimental method.



                                                                            This paper describes how the researchers came up with a nice formula for the combinatorial (aka modified) Macdonald polynomials.






                                                                            share|cite|improve this answer


























                                                                              1












                                                                              1








                                                                              1






                                                                              I enjoy The genesis of the Macdonald polynomial statistics, complete with journal entries, and detailed descriptions of the experimental method.



                                                                              This paper describes how the researchers came up with a nice formula for the combinatorial (aka modified) Macdonald polynomials.






                                                                              share|cite|improve this answer














                                                                              I enjoy The genesis of the Macdonald polynomial statistics, complete with journal entries, and detailed descriptions of the experimental method.



                                                                              This paper describes how the researchers came up with a nice formula for the combinatorial (aka modified) Macdonald polynomials.







                                                                              share|cite|improve this answer














                                                                              share|cite|improve this answer



                                                                              share|cite|improve this answer








                                                                              answered Dec 10 at 7:28


























                                                                              community wiki





                                                                              Per Alexandersson































                                                                                  draft saved

                                                                                  draft discarded




















































                                                                                  Thanks for contributing an answer to MathOverflow!


                                                                                  • Please be sure to answer the question. Provide details and share your research!

                                                                                  But avoid



                                                                                  • Asking for help, clarification, or responding to other answers.

                                                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                                                  Use MathJax to format equations. MathJax reference.


                                                                                  To learn more, see our tips on writing great answers.





                                                                                  Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                                                                  Please pay close attention to the following guidance:


                                                                                  • Please be sure to answer the question. Provide details and share your research!

                                                                                  But avoid



                                                                                  • Asking for help, clarification, or responding to other answers.

                                                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                                                  To learn more, see our tips on writing great answers.




                                                                                  draft saved


                                                                                  draft discarded














                                                                                  StackExchange.ready(
                                                                                  function () {
                                                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f315843%2fexamples-of-mathematical-papers-that-contain-a-kind-of-research-report%23new-answer', 'question_page');
                                                                                  }
                                                                                  );

                                                                                  Post as a guest















                                                                                  Required, but never shown





















































                                                                                  Required, but never shown














                                                                                  Required, but never shown












                                                                                  Required, but never shown







                                                                                  Required, but never shown

































                                                                                  Required, but never shown














                                                                                  Required, but never shown












                                                                                  Required, but never shown







                                                                                  Required, but never shown







                                                                                  Popular posts from this blog

                                                                                  404 Error Contact Form 7 ajax form submitting

                                                                                  How to know if a Active Directory user can login interactively

                                                                                  How to resolve this name issue having white space while installing the android Studio.?