Ceil and floor function
$begingroup$
Let $a$ and $b$ be positive integers.
If $b$ is even, then we have $$leftlfloor frac{a-b}{2} rightrfloor + leftlceil frac{a+b}{2} rightrceil = a$$
I thing the equality also hold when $b$ is odd. What could be a proof for it?
Thank you
floor-function ceiling-function
$endgroup$
add a comment |
$begingroup$
Let $a$ and $b$ be positive integers.
If $b$ is even, then we have $$leftlfloor frac{a-b}{2} rightrfloor + leftlceil frac{a+b}{2} rightrceil = a$$
I thing the equality also hold when $b$ is odd. What could be a proof for it?
Thank you
floor-function ceiling-function
$endgroup$
$begingroup$
Write $b$ as $2k + 1$, where $k$ is a nonnegative integer. Then look at two cases: $a = 2s$ ($s$ a positive integer), and $a = 2s + 1$ ($s$ a nonnegative integer). What do you get for the left-hand side in each case? [You can show your work by clicking "edit" beneath your question.]
$endgroup$
– John Hughes
28 mins ago
add a comment |
$begingroup$
Let $a$ and $b$ be positive integers.
If $b$ is even, then we have $$leftlfloor frac{a-b}{2} rightrfloor + leftlceil frac{a+b}{2} rightrceil = a$$
I thing the equality also hold when $b$ is odd. What could be a proof for it?
Thank you
floor-function ceiling-function
$endgroup$
Let $a$ and $b$ be positive integers.
If $b$ is even, then we have $$leftlfloor frac{a-b}{2} rightrfloor + leftlceil frac{a+b}{2} rightrceil = a$$
I thing the equality also hold when $b$ is odd. What could be a proof for it?
Thank you
floor-function ceiling-function
floor-function ceiling-function
edited 32 mins ago
Adam54
asked 37 mins ago
Adam54Adam54
615
615
$begingroup$
Write $b$ as $2k + 1$, where $k$ is a nonnegative integer. Then look at two cases: $a = 2s$ ($s$ a positive integer), and $a = 2s + 1$ ($s$ a nonnegative integer). What do you get for the left-hand side in each case? [You can show your work by clicking "edit" beneath your question.]
$endgroup$
– John Hughes
28 mins ago
add a comment |
$begingroup$
Write $b$ as $2k + 1$, where $k$ is a nonnegative integer. Then look at two cases: $a = 2s$ ($s$ a positive integer), and $a = 2s + 1$ ($s$ a nonnegative integer). What do you get for the left-hand side in each case? [You can show your work by clicking "edit" beneath your question.]
$endgroup$
– John Hughes
28 mins ago
$begingroup$
Write $b$ as $2k + 1$, where $k$ is a nonnegative integer. Then look at two cases: $a = 2s$ ($s$ a positive integer), and $a = 2s + 1$ ($s$ a nonnegative integer). What do you get for the left-hand side in each case? [You can show your work by clicking "edit" beneath your question.]
$endgroup$
– John Hughes
28 mins ago
$begingroup$
Write $b$ as $2k + 1$, where $k$ is a nonnegative integer. Then look at two cases: $a = 2s$ ($s$ a positive integer), and $a = 2s + 1$ ($s$ a nonnegative integer). What do you get for the left-hand side in each case? [You can show your work by clicking "edit" beneath your question.]
$endgroup$
– John Hughes
28 mins ago
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
If $a$ and $b$ are both odd (or both even), then $a-b$ and $a+b$ are both even, and thus $$leftlfloor frac{a-b}{2} rightrfloor = frac{a-b}{2} quadtext{and}quad leftlceil frac{a+b}{2} rightrceil = frac{a+b}{2}.$$
Otherwise, if exactly one of $a$ and $b$ is odd, then $a-b$ and $a+b$ are both odd, and thus $$leftlfloor frac{a-b}{2} rightrfloor = frac{a-b}{2} - frac12 quadtext{and}quad leftlceil frac{a+b}{2} rightrceil = frac{a+b}{2} + frac12.$$
In either case, it's easy to check that your equation holds.
$endgroup$
$begingroup$
Thank you very much for the odd case, made very simple!
$endgroup$
– Adam54
20 mins ago
add a comment |
$begingroup$
The equality only depends on the parity of $a+b$, as it is the same as that of $a-b$. Then
$$leftlfloorfrac02rightrfloor+leftlceilfrac02rightrceil=0$$
and
$$leftlfloorfrac12rightrfloor+leftlceilfrac12rightrceil=1$$
are enough as a proof.
$endgroup$
add a comment |
$begingroup$
If $a$ and $b$ are both odd then we have $a=2m+1$ and $b=2n+1$ where $m$ and $n$ are positive integers.
Then, we have begin{align}leftlfloorfrac{a-b}2rightrfloor+leftlceilfrac{a+b}2rightrceil &= leftlfloorfrac{(2m+1)-(2n+1)}2rightrfloor+ leftlceilfrac{(2m+1)+(2n+1)}2rightrceil\
&=leftlfloorfrac{2m-2n}2rightrfloor+ leftlceilfrac{2m+2n+2}2rightrceil\
&=lfloor m-nrfloor + lceil m+n+1rceil\
&= m-n + m+n+1tag{$*$}\
&= 2m+1\
&=aend{align}
We can get to $(*)$ because $m$ and $n$ are integers and so their floor (or ceiling) is just the number inside (two integers added or subtracted will always give an integer answer).
If $a$ is even and $b$ is odd, then we have $a=2m$ and $b=2n+1$, again for $m$ and $n$ integers.
So we have begin{align}leftlfloorfrac{a-b}2rightrfloor+leftlceilfrac{a+b}2rightrceil &= leftlfloorfrac{(2m)-(2n+1)}2rightrfloor+ leftlceilfrac{(2m)+(2n+1)}2rightrceil\
&=leftlfloorfrac{2m-2n-1}2rightrfloor+ leftlceilfrac{2m+2n+1}2rightrceil\
&=leftlfloor m-n-frac 12rightrfloor + leftlceil m+n+frac12rightrceil\
&= m-n -1+ m+n+1tag{$dagger$}\
&= 2m\
&=aend{align}
Here we get to $(dagger)$ because we round the first half down and the second half up to their respective nearest integers
$endgroup$
add a comment |
$begingroup$
As $s:=a+b$ and $a-b$ have the same parity, we can write
$$leftlfloorfrac{s-2b}2rightrfloor+leftlceilfrac s2rightrceil=leftlfloorfrac s2rightrfloor+leftlceilfrac s2rightrceil-b=s-b=a.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087071%2fceil-and-floor-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $a$ and $b$ are both odd (or both even), then $a-b$ and $a+b$ are both even, and thus $$leftlfloor frac{a-b}{2} rightrfloor = frac{a-b}{2} quadtext{and}quad leftlceil frac{a+b}{2} rightrceil = frac{a+b}{2}.$$
Otherwise, if exactly one of $a$ and $b$ is odd, then $a-b$ and $a+b$ are both odd, and thus $$leftlfloor frac{a-b}{2} rightrfloor = frac{a-b}{2} - frac12 quadtext{and}quad leftlceil frac{a+b}{2} rightrceil = frac{a+b}{2} + frac12.$$
In either case, it's easy to check that your equation holds.
$endgroup$
$begingroup$
Thank you very much for the odd case, made very simple!
$endgroup$
– Adam54
20 mins ago
add a comment |
$begingroup$
If $a$ and $b$ are both odd (or both even), then $a-b$ and $a+b$ are both even, and thus $$leftlfloor frac{a-b}{2} rightrfloor = frac{a-b}{2} quadtext{and}quad leftlceil frac{a+b}{2} rightrceil = frac{a+b}{2}.$$
Otherwise, if exactly one of $a$ and $b$ is odd, then $a-b$ and $a+b$ are both odd, and thus $$leftlfloor frac{a-b}{2} rightrfloor = frac{a-b}{2} - frac12 quadtext{and}quad leftlceil frac{a+b}{2} rightrceil = frac{a+b}{2} + frac12.$$
In either case, it's easy to check that your equation holds.
$endgroup$
$begingroup$
Thank you very much for the odd case, made very simple!
$endgroup$
– Adam54
20 mins ago
add a comment |
$begingroup$
If $a$ and $b$ are both odd (or both even), then $a-b$ and $a+b$ are both even, and thus $$leftlfloor frac{a-b}{2} rightrfloor = frac{a-b}{2} quadtext{and}quad leftlceil frac{a+b}{2} rightrceil = frac{a+b}{2}.$$
Otherwise, if exactly one of $a$ and $b$ is odd, then $a-b$ and $a+b$ are both odd, and thus $$leftlfloor frac{a-b}{2} rightrfloor = frac{a-b}{2} - frac12 quadtext{and}quad leftlceil frac{a+b}{2} rightrceil = frac{a+b}{2} + frac12.$$
In either case, it's easy to check that your equation holds.
$endgroup$
If $a$ and $b$ are both odd (or both even), then $a-b$ and $a+b$ are both even, and thus $$leftlfloor frac{a-b}{2} rightrfloor = frac{a-b}{2} quadtext{and}quad leftlceil frac{a+b}{2} rightrceil = frac{a+b}{2}.$$
Otherwise, if exactly one of $a$ and $b$ is odd, then $a-b$ and $a+b$ are both odd, and thus $$leftlfloor frac{a-b}{2} rightrfloor = frac{a-b}{2} - frac12 quadtext{and}quad leftlceil frac{a+b}{2} rightrceil = frac{a+b}{2} + frac12.$$
In either case, it's easy to check that your equation holds.
answered 23 mins ago
Ilmari KaronenIlmari Karonen
19.7k25183
19.7k25183
$begingroup$
Thank you very much for the odd case, made very simple!
$endgroup$
– Adam54
20 mins ago
add a comment |
$begingroup$
Thank you very much for the odd case, made very simple!
$endgroup$
– Adam54
20 mins ago
$begingroup$
Thank you very much for the odd case, made very simple!
$endgroup$
– Adam54
20 mins ago
$begingroup$
Thank you very much for the odd case, made very simple!
$endgroup$
– Adam54
20 mins ago
add a comment |
$begingroup$
The equality only depends on the parity of $a+b$, as it is the same as that of $a-b$. Then
$$leftlfloorfrac02rightrfloor+leftlceilfrac02rightrceil=0$$
and
$$leftlfloorfrac12rightrfloor+leftlceilfrac12rightrceil=1$$
are enough as a proof.
$endgroup$
add a comment |
$begingroup$
The equality only depends on the parity of $a+b$, as it is the same as that of $a-b$. Then
$$leftlfloorfrac02rightrfloor+leftlceilfrac02rightrceil=0$$
and
$$leftlfloorfrac12rightrfloor+leftlceilfrac12rightrceil=1$$
are enough as a proof.
$endgroup$
add a comment |
$begingroup$
The equality only depends on the parity of $a+b$, as it is the same as that of $a-b$. Then
$$leftlfloorfrac02rightrfloor+leftlceilfrac02rightrceil=0$$
and
$$leftlfloorfrac12rightrfloor+leftlceilfrac12rightrceil=1$$
are enough as a proof.
$endgroup$
The equality only depends on the parity of $a+b$, as it is the same as that of $a-b$. Then
$$leftlfloorfrac02rightrfloor+leftlceilfrac02rightrceil=0$$
and
$$leftlfloorfrac12rightrfloor+leftlceilfrac12rightrceil=1$$
are enough as a proof.
answered 25 mins ago
Yves DaoustYves Daoust
125k671223
125k671223
add a comment |
add a comment |
$begingroup$
If $a$ and $b$ are both odd then we have $a=2m+1$ and $b=2n+1$ where $m$ and $n$ are positive integers.
Then, we have begin{align}leftlfloorfrac{a-b}2rightrfloor+leftlceilfrac{a+b}2rightrceil &= leftlfloorfrac{(2m+1)-(2n+1)}2rightrfloor+ leftlceilfrac{(2m+1)+(2n+1)}2rightrceil\
&=leftlfloorfrac{2m-2n}2rightrfloor+ leftlceilfrac{2m+2n+2}2rightrceil\
&=lfloor m-nrfloor + lceil m+n+1rceil\
&= m-n + m+n+1tag{$*$}\
&= 2m+1\
&=aend{align}
We can get to $(*)$ because $m$ and $n$ are integers and so their floor (or ceiling) is just the number inside (two integers added or subtracted will always give an integer answer).
If $a$ is even and $b$ is odd, then we have $a=2m$ and $b=2n+1$, again for $m$ and $n$ integers.
So we have begin{align}leftlfloorfrac{a-b}2rightrfloor+leftlceilfrac{a+b}2rightrceil &= leftlfloorfrac{(2m)-(2n+1)}2rightrfloor+ leftlceilfrac{(2m)+(2n+1)}2rightrceil\
&=leftlfloorfrac{2m-2n-1}2rightrfloor+ leftlceilfrac{2m+2n+1}2rightrceil\
&=leftlfloor m-n-frac 12rightrfloor + leftlceil m+n+frac12rightrceil\
&= m-n -1+ m+n+1tag{$dagger$}\
&= 2m\
&=aend{align}
Here we get to $(dagger)$ because we round the first half down and the second half up to their respective nearest integers
$endgroup$
add a comment |
$begingroup$
If $a$ and $b$ are both odd then we have $a=2m+1$ and $b=2n+1$ where $m$ and $n$ are positive integers.
Then, we have begin{align}leftlfloorfrac{a-b}2rightrfloor+leftlceilfrac{a+b}2rightrceil &= leftlfloorfrac{(2m+1)-(2n+1)}2rightrfloor+ leftlceilfrac{(2m+1)+(2n+1)}2rightrceil\
&=leftlfloorfrac{2m-2n}2rightrfloor+ leftlceilfrac{2m+2n+2}2rightrceil\
&=lfloor m-nrfloor + lceil m+n+1rceil\
&= m-n + m+n+1tag{$*$}\
&= 2m+1\
&=aend{align}
We can get to $(*)$ because $m$ and $n$ are integers and so their floor (or ceiling) is just the number inside (two integers added or subtracted will always give an integer answer).
If $a$ is even and $b$ is odd, then we have $a=2m$ and $b=2n+1$, again for $m$ and $n$ integers.
So we have begin{align}leftlfloorfrac{a-b}2rightrfloor+leftlceilfrac{a+b}2rightrceil &= leftlfloorfrac{(2m)-(2n+1)}2rightrfloor+ leftlceilfrac{(2m)+(2n+1)}2rightrceil\
&=leftlfloorfrac{2m-2n-1}2rightrfloor+ leftlceilfrac{2m+2n+1}2rightrceil\
&=leftlfloor m-n-frac 12rightrfloor + leftlceil m+n+frac12rightrceil\
&= m-n -1+ m+n+1tag{$dagger$}\
&= 2m\
&=aend{align}
Here we get to $(dagger)$ because we round the first half down and the second half up to their respective nearest integers
$endgroup$
add a comment |
$begingroup$
If $a$ and $b$ are both odd then we have $a=2m+1$ and $b=2n+1$ where $m$ and $n$ are positive integers.
Then, we have begin{align}leftlfloorfrac{a-b}2rightrfloor+leftlceilfrac{a+b}2rightrceil &= leftlfloorfrac{(2m+1)-(2n+1)}2rightrfloor+ leftlceilfrac{(2m+1)+(2n+1)}2rightrceil\
&=leftlfloorfrac{2m-2n}2rightrfloor+ leftlceilfrac{2m+2n+2}2rightrceil\
&=lfloor m-nrfloor + lceil m+n+1rceil\
&= m-n + m+n+1tag{$*$}\
&= 2m+1\
&=aend{align}
We can get to $(*)$ because $m$ and $n$ are integers and so their floor (or ceiling) is just the number inside (two integers added or subtracted will always give an integer answer).
If $a$ is even and $b$ is odd, then we have $a=2m$ and $b=2n+1$, again for $m$ and $n$ integers.
So we have begin{align}leftlfloorfrac{a-b}2rightrfloor+leftlceilfrac{a+b}2rightrceil &= leftlfloorfrac{(2m)-(2n+1)}2rightrfloor+ leftlceilfrac{(2m)+(2n+1)}2rightrceil\
&=leftlfloorfrac{2m-2n-1}2rightrfloor+ leftlceilfrac{2m+2n+1}2rightrceil\
&=leftlfloor m-n-frac 12rightrfloor + leftlceil m+n+frac12rightrceil\
&= m-n -1+ m+n+1tag{$dagger$}\
&= 2m\
&=aend{align}
Here we get to $(dagger)$ because we round the first half down and the second half up to their respective nearest integers
$endgroup$
If $a$ and $b$ are both odd then we have $a=2m+1$ and $b=2n+1$ where $m$ and $n$ are positive integers.
Then, we have begin{align}leftlfloorfrac{a-b}2rightrfloor+leftlceilfrac{a+b}2rightrceil &= leftlfloorfrac{(2m+1)-(2n+1)}2rightrfloor+ leftlceilfrac{(2m+1)+(2n+1)}2rightrceil\
&=leftlfloorfrac{2m-2n}2rightrfloor+ leftlceilfrac{2m+2n+2}2rightrceil\
&=lfloor m-nrfloor + lceil m+n+1rceil\
&= m-n + m+n+1tag{$*$}\
&= 2m+1\
&=aend{align}
We can get to $(*)$ because $m$ and $n$ are integers and so their floor (or ceiling) is just the number inside (two integers added or subtracted will always give an integer answer).
If $a$ is even and $b$ is odd, then we have $a=2m$ and $b=2n+1$, again for $m$ and $n$ integers.
So we have begin{align}leftlfloorfrac{a-b}2rightrfloor+leftlceilfrac{a+b}2rightrceil &= leftlfloorfrac{(2m)-(2n+1)}2rightrfloor+ leftlceilfrac{(2m)+(2n+1)}2rightrceil\
&=leftlfloorfrac{2m-2n-1}2rightrfloor+ leftlceilfrac{2m+2n+1}2rightrceil\
&=leftlfloor m-n-frac 12rightrfloor + leftlceil m+n+frac12rightrceil\
&= m-n -1+ m+n+1tag{$dagger$}\
&= 2m\
&=aend{align}
Here we get to $(dagger)$ because we round the first half down and the second half up to their respective nearest integers
answered 22 mins ago
lioness99alioness99a
3,6842727
3,6842727
add a comment |
add a comment |
$begingroup$
As $s:=a+b$ and $a-b$ have the same parity, we can write
$$leftlfloorfrac{s-2b}2rightrfloor+leftlceilfrac s2rightrceil=leftlfloorfrac s2rightrfloor+leftlceilfrac s2rightrceil-b=s-b=a.$$
$endgroup$
add a comment |
$begingroup$
As $s:=a+b$ and $a-b$ have the same parity, we can write
$$leftlfloorfrac{s-2b}2rightrfloor+leftlceilfrac s2rightrceil=leftlfloorfrac s2rightrfloor+leftlceilfrac s2rightrceil-b=s-b=a.$$
$endgroup$
add a comment |
$begingroup$
As $s:=a+b$ and $a-b$ have the same parity, we can write
$$leftlfloorfrac{s-2b}2rightrfloor+leftlceilfrac s2rightrceil=leftlfloorfrac s2rightrfloor+leftlceilfrac s2rightrceil-b=s-b=a.$$
$endgroup$
As $s:=a+b$ and $a-b$ have the same parity, we can write
$$leftlfloorfrac{s-2b}2rightrfloor+leftlceilfrac s2rightrceil=leftlfloorfrac s2rightrfloor+leftlceilfrac s2rightrceil-b=s-b=a.$$
answered 10 mins ago
Yves DaoustYves Daoust
125k671223
125k671223
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087071%2fceil-and-floor-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Write $b$ as $2k + 1$, where $k$ is a nonnegative integer. Then look at two cases: $a = 2s$ ($s$ a positive integer), and $a = 2s + 1$ ($s$ a nonnegative integer). What do you get for the left-hand side in each case? [You can show your work by clicking "edit" beneath your question.]
$endgroup$
– John Hughes
28 mins ago