Question about an inequation described by matrices
$A=(a_{ij})_{1 le i, j le n}$ is a matrix that$sum_limits{i=1}^{n} a_{ij}=1$ for every j and $sum_limits{j=1}^n a_{ij} = 1$ for every i and $a_{ij} ge 0$.And
$$begin{equation}
begin{pmatrix}
y_1 \
vdots \
y_n \
end{pmatrix}
=mathbf{A}
begin{pmatrix}
x_1 \
vdots \
x_n
end{pmatrix}
end{equation}$$
$y_i$ and $x_i$ are all nonnegative.Prove that : $y_1 cdots y_n ge x_1 cdots x_n$
It may somehow matter to convex function.
linear-algebra inequalities convex-analysis
New contributor
add a comment |
$A=(a_{ij})_{1 le i, j le n}$ is a matrix that$sum_limits{i=1}^{n} a_{ij}=1$ for every j and $sum_limits{j=1}^n a_{ij} = 1$ for every i and $a_{ij} ge 0$.And
$$begin{equation}
begin{pmatrix}
y_1 \
vdots \
y_n \
end{pmatrix}
=mathbf{A}
begin{pmatrix}
x_1 \
vdots \
x_n
end{pmatrix}
end{equation}$$
$y_i$ and $x_i$ are all nonnegative.Prove that : $y_1 cdots y_n ge x_1 cdots x_n$
It may somehow matter to convex function.
linear-algebra inequalities convex-analysis
New contributor
add a comment |
$A=(a_{ij})_{1 le i, j le n}$ is a matrix that$sum_limits{i=1}^{n} a_{ij}=1$ for every j and $sum_limits{j=1}^n a_{ij} = 1$ for every i and $a_{ij} ge 0$.And
$$begin{equation}
begin{pmatrix}
y_1 \
vdots \
y_n \
end{pmatrix}
=mathbf{A}
begin{pmatrix}
x_1 \
vdots \
x_n
end{pmatrix}
end{equation}$$
$y_i$ and $x_i$ are all nonnegative.Prove that : $y_1 cdots y_n ge x_1 cdots x_n$
It may somehow matter to convex function.
linear-algebra inequalities convex-analysis
New contributor
$A=(a_{ij})_{1 le i, j le n}$ is a matrix that$sum_limits{i=1}^{n} a_{ij}=1$ for every j and $sum_limits{j=1}^n a_{ij} = 1$ for every i and $a_{ij} ge 0$.And
$$begin{equation}
begin{pmatrix}
y_1 \
vdots \
y_n \
end{pmatrix}
=mathbf{A}
begin{pmatrix}
x_1 \
vdots \
x_n
end{pmatrix}
end{equation}$$
$y_i$ and $x_i$ are all nonnegative.Prove that : $y_1 cdots y_n ge x_1 cdots x_n$
It may somehow matter to convex function.
linear-algebra inequalities convex-analysis
linear-algebra inequalities convex-analysis
New contributor
New contributor
edited 46 mins ago
user44191
2,5431126
2,5431126
New contributor
asked 2 hours ago
X.T Chen
112
112
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
By the equivalence of conditions (ii) and (iv) in Theorem A.3 on page 14, the condition $y=Ax$ for $y=[y,dots,y_n]^T$ and $x=[x,dots,x_n]^T$ is equivalent to the condition that $sum_1^n g(y_i)gesum_1^n g(x_i)$ for all continuous concave functions $g$. Now take $g=ln$ to get the desired inequality $y_1 cdots y_n ge x_1 cdots x_n$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
X.T Chen is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f319474%2fquestion-about-an-inequation-described-by-matrices%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
By the equivalence of conditions (ii) and (iv) in Theorem A.3 on page 14, the condition $y=Ax$ for $y=[y,dots,y_n]^T$ and $x=[x,dots,x_n]^T$ is equivalent to the condition that $sum_1^n g(y_i)gesum_1^n g(x_i)$ for all continuous concave functions $g$. Now take $g=ln$ to get the desired inequality $y_1 cdots y_n ge x_1 cdots x_n$.
add a comment |
By the equivalence of conditions (ii) and (iv) in Theorem A.3 on page 14, the condition $y=Ax$ for $y=[y,dots,y_n]^T$ and $x=[x,dots,x_n]^T$ is equivalent to the condition that $sum_1^n g(y_i)gesum_1^n g(x_i)$ for all continuous concave functions $g$. Now take $g=ln$ to get the desired inequality $y_1 cdots y_n ge x_1 cdots x_n$.
add a comment |
By the equivalence of conditions (ii) and (iv) in Theorem A.3 on page 14, the condition $y=Ax$ for $y=[y,dots,y_n]^T$ and $x=[x,dots,x_n]^T$ is equivalent to the condition that $sum_1^n g(y_i)gesum_1^n g(x_i)$ for all continuous concave functions $g$. Now take $g=ln$ to get the desired inequality $y_1 cdots y_n ge x_1 cdots x_n$.
By the equivalence of conditions (ii) and (iv) in Theorem A.3 on page 14, the condition $y=Ax$ for $y=[y,dots,y_n]^T$ and $x=[x,dots,x_n]^T$ is equivalent to the condition that $sum_1^n g(y_i)gesum_1^n g(x_i)$ for all continuous concave functions $g$. Now take $g=ln$ to get the desired inequality $y_1 cdots y_n ge x_1 cdots x_n$.
answered 1 hour ago
Iosif Pinelis
17.7k12158
17.7k12158
add a comment |
add a comment |
X.T Chen is a new contributor. Be nice, and check out our Code of Conduct.
X.T Chen is a new contributor. Be nice, and check out our Code of Conduct.
X.T Chen is a new contributor. Be nice, and check out our Code of Conduct.
X.T Chen is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f319474%2fquestion-about-an-inequation-described-by-matrices%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown